Abstract

A differential absorption lidar (DIAL) using a Q-switched CO2 laser and a heterodyne receiver has been developed. The DIAL system is highly automated with computer-controlled laser-line selection and signal processing. The transmitter operates at a pulse-repetition frequency of 20 kHz and has an average output power of 1.8 W. A wideband HgCdTe detector is used together with a high speed adding buffer to detect the return signals. The system has been used in a field experiment to monitor ethylene emission from a petrochemical factory.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  2. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  3. W. Baumer, K. W. Rothe, H. Walther, “Range-Resolved Measurements of Atmospheric Pollutants,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979) (DFVLR, Munich, 1979), pp. 200–202.
  4. P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.
  5. D. K. Killinger, N. Menyuk, in Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC3-1.
  6. J. W. van Dÿk et al., Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThB1-1.
  7. J. M. Cruichshank, Appl. Opt. 18, 290 (1979).
    [CrossRef]
  8. A. G. Kjelaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
    [CrossRef] [PubMed]
  9. G. A. Massey, Appl. Opt. 4, 781 (1965).
    [CrossRef]
  10. D. L. Fried, Proc. IEEE 55, 57 (1967).
    [CrossRef]
  11. J. J. Degnan, B. J. Klein, Appl. Opt. 13, 2397 (1974).
    [CrossRef] [PubMed]
  12. U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, Appl. Opt. 19, 1711 (1980).
    [CrossRef] [PubMed]

1980

1979

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

J. M. Cruichshank, Appl. Opt. 18, 290 (1979).
[CrossRef]

1978

1974

1967

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

1965

Asai, K.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Baumer, W.

W. Baumer, K. W. Rothe, H. Walther, “Range-Resolved Measurements of Atmospheric Pollutants,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979) (DFVLR, Munich, 1979), pp. 200–202.

Bjerkestrand, A.

Cruichshank, J. M.

De Feo, W. E.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

Degnan, J. J.

Eng, S. T.

Fried, D. L.

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Johansson, J.

Kelley, P. L.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

Killinger, D. K.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

D. K. Killinger, N. Menyuk, in Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC3-1.

Kjelaas, A. G.

Klein, B. J.

Marthinsson, B.

Massey, G. A.

Menyuk, N.

D. K. Killinger, N. Menyuk, in Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC3-1.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

Mooradian, A.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

Moulton, P. F.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

Murray, E. R.

Nordal, P. E.

Persson, U.

Rothe, K. W.

W. Baumer, K. W. Rothe, H. Walther, “Range-Resolved Measurements of Atmospheric Pollutants,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979) (DFVLR, Munich, 1979), pp. 200–202.

van der Laan, J. E.

van Dÿk, J. W.

J. W. van Dÿk et al., Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThB1-1.

Walther, H.

W. Baumer, K. W. Rothe, H. Walther, “Range-Resolved Measurements of Atmospheric Pollutants,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979) (DFVLR, Munich, 1979), pp. 200–202.

Appl. Opt.

Appl. Phys. Lett.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Proc. IEEE

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Other

W. Baumer, K. W. Rothe, H. Walther, “Range-Resolved Measurements of Atmospheric Pollutants,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979) (DFVLR, Munich, 1979), pp. 200–202.

P. L. Kelley, D. K. Killinger, N. Menyuk, A. Mooradian, P. F. Moulton, W. E. De Feo, “Development and Preliminary Operation of a 5- and 10-μm DIAL system,” in Proceedings, Ninth International Laser Radar Conference, Munich, 2–5 July 1979 (DFVLR, Munich, 1979), pp. 209–210.

D. K. Killinger, N. Menyuk, in Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC3-1.

J. W. van Dÿk et al., Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThB1-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical block diagram of the coherent lidar system.

Fig. 2
Fig. 2

Block diagram of the electronics for the coherent lidar system, including the computer, laser control, and the signal electronics.

Fig. 3
Fig. 3

Program structure for the software controlling the DIAL system. There are five groups of commands: laser control; measurements; computations; display; and file handling. There are three data buffers: reference data (REF); absorption line data (ABS); and computed results (RES). Measurements are controlled by the PARAM and MEASURE commands. Computation of the gas concentration corresponding to the differential absorption is performed by the COMPUT command.

Fig. 4
Fig. 4

Return signal when the lidar beam was aimed through the mist of a cooling tower plume. The echo at 2 km is from the hillside along the line of sight beyond the cooling tower.

Fig. 5
Fig. 5

Normalized return signals from a hillside at two CO2 laser wavelengths, P(14) and P(20), of the 10.4-μm band. The ratio of the two signals was used to calculate the average amount of ethylene along the optical path.

Fig. 6
Fig. 6

Return signal from an aerosol plume above the steamcracker plant. The data shown are the results of 4 × 106 measurements performed in a 7-min time period. The dotted line is the averaged signal level.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P R ( λ ) P 0 ( λ ) = exp [ k ( λ ) L ] ,
P R ( λ ) P 0 ( λ ) = T R ( λ ) exp L [ α M ( λ ) + n = 1 N α n ( λ ) C n ] ,
V Ri = ( P Li P Ri ) 1 / 2 ,
V Oi = g ( P Li P Oi ) 1 / 2 ,
C = 1 L [ α ( λ 2 ) α ( λ 1 ) ] ln ( P R 1 P R 2 P O 2 P O 1 ) ,
C = 1 L [ α ( λ 2 ) α ( λ 1 ) ] ln ( V R 1 V R 2 V O 2 V O 1 ) 2 .

Metrics