Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Tynes, A. D. Pearson, D. L. Bisbee, J. Opt. Soc. Am. 61, 143 (1971).
    [CrossRef]
  2. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).
  3. P. L. Marston, D. L. Kingsbury, J. Opt. Soc. Am. 71, 192, E917 (1981).
    [CrossRef]
  4. G. E. Davis, J. Opt. Soc. Am. 45, 572 (1955).
    [CrossRef]
  5. D. L. Kingsbury, P. L. Marston, J. Opt. Soc. Am. 71, 358 (1981).
    [CrossRef]
  6. W. J. Wiscombe, Appl. Opt. 19, 1505 (1980).
    [CrossRef] [PubMed]
  7. P. L. Marston, J. Opt. Soc. Am. 69, 1205 (1979);J. Opt. Soc. Am.70, 353 (E) (1980).
    [CrossRef]
  8. There may be an exception to this guideline for large spherical bubbles because backscattering can be enhanced by the axial focusing of p = 3 glory rays.Observations of this enhancement for bubbles in liquids are described in P. L. Marston, D. S. Langley, J. Opt. Soc. Am. 70, 1607 (1980).
  9. Refraction corrections, such as those described in Ref. 7, are simplified when the light enters and leaves the scattering volume via plane interfaces, and a lens is used to place the detector in the far field. This may be achieved by immersing the glass in an index-matching liquid and illuminating and observing it via windows.
  10. U.S. Ordnance Department (Document 2037), The Manufacture of Optical Glass and of Optical Systems. A War-Time Problem (U.S. GPO, Washington, D.C., 1921), pp. 205, 206.
  11. D. L. Kingsbury, M.S. Thesis, Washington State U. (1981).
  12. N. Morita, N. Kumagai, IEEE Trans. Microwave Theory Tech. MTT-28, 137 (1980).
    [CrossRef]
  13. N. K. Uzunoglu, J. Opt. Soc. Am. 71, 259 (1981).
    [CrossRef]

1981 (3)

1980 (3)

There may be an exception to this guideline for large spherical bubbles because backscattering can be enhanced by the axial focusing of p = 3 glory rays.Observations of this enhancement for bubbles in liquids are described in P. L. Marston, D. S. Langley, J. Opt. Soc. Am. 70, 1607 (1980).

N. Morita, N. Kumagai, IEEE Trans. Microwave Theory Tech. MTT-28, 137 (1980).
[CrossRef]

W. J. Wiscombe, Appl. Opt. 19, 1505 (1980).
[CrossRef] [PubMed]

1979 (1)

1971 (1)

1955 (1)

1908 (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Bisbee, D. L.

Davis, G. E.

Kingsbury, D. L.

D. L. Kingsbury, P. L. Marston, J. Opt. Soc. Am. 71, 358 (1981).
[CrossRef]

P. L. Marston, D. L. Kingsbury, J. Opt. Soc. Am. 71, 192, E917 (1981).
[CrossRef]

D. L. Kingsbury, M.S. Thesis, Washington State U. (1981).

Kumagai, N.

N. Morita, N. Kumagai, IEEE Trans. Microwave Theory Tech. MTT-28, 137 (1980).
[CrossRef]

Langley, D. S.

There may be an exception to this guideline for large spherical bubbles because backscattering can be enhanced by the axial focusing of p = 3 glory rays.Observations of this enhancement for bubbles in liquids are described in P. L. Marston, D. S. Langley, J. Opt. Soc. Am. 70, 1607 (1980).

Marston, P. L.

D. L. Kingsbury, P. L. Marston, J. Opt. Soc. Am. 71, 358 (1981).
[CrossRef]

P. L. Marston, D. L. Kingsbury, J. Opt. Soc. Am. 71, 192, E917 (1981).
[CrossRef]

There may be an exception to this guideline for large spherical bubbles because backscattering can be enhanced by the axial focusing of p = 3 glory rays.Observations of this enhancement for bubbles in liquids are described in P. L. Marston, D. S. Langley, J. Opt. Soc. Am. 70, 1607 (1980).

P. L. Marston, J. Opt. Soc. Am. 69, 1205 (1979);J. Opt. Soc. Am.70, 353 (E) (1980).
[CrossRef]

Mie, G.

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Morita, N.

N. Morita, N. Kumagai, IEEE Trans. Microwave Theory Tech. MTT-28, 137 (1980).
[CrossRef]

Pearson, A. D.

Tynes, A. R.

Uzunoglu, N. K.

Wiscombe, W. J.

Ann. Phys. (Leipzig) (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Appl. Opt. (1)

IEEE Trans. Microwave Theory Tech. (1)

N. Morita, N. Kumagai, IEEE Trans. Microwave Theory Tech. MTT-28, 137 (1980).
[CrossRef]

J. Opt. Soc. Am. (7)

G. E. Davis, J. Opt. Soc. Am. 45, 572 (1955).
[CrossRef]

A. R. Tynes, A. D. Pearson, D. L. Bisbee, J. Opt. Soc. Am. 61, 143 (1971).
[CrossRef]

N. K. Uzunoglu, J. Opt. Soc. Am. 71, 259 (1981).
[CrossRef]

D. L. Kingsbury, P. L. Marston, J. Opt. Soc. Am. 71, 358 (1981).
[CrossRef]

P. L. Marston, J. Opt. Soc. Am. 69, 1205 (1979);J. Opt. Soc. Am.70, 353 (E) (1980).
[CrossRef]

P. L. Marston, D. L. Kingsbury, J. Opt. Soc. Am. 71, 192, E917 (1981).
[CrossRef]

There may be an exception to this guideline for large spherical bubbles because backscattering can be enhanced by the axial focusing of p = 3 glory rays.Observations of this enhancement for bubbles in liquids are described in P. L. Marston, D. S. Langley, J. Opt. Soc. Am. 70, 1607 (1980).

Other (3)

Refraction corrections, such as those described in Ref. 7, are simplified when the light enters and leaves the scattering volume via plane interfaces, and a lens is used to place the detector in the far field. This may be achieved by immersing the glass in an index-matching liquid and illuminating and observing it via windows.

U.S. Ordnance Department (Document 2037), The Manufacture of Optical Glass and of Optical Systems. A War-Time Problem (U.S. GPO, Washington, D.C., 1921), pp. 205, 206.

D. L. Kingsbury, M.S. Thesis, Washington State U. (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Logarithm (base 10) of the normalized scattered intensity predicted by Mie theory (solid curve) for ka = 100 and the electric field perpendicular to the scattering plane. The dashed curve is the physical optics approximation given by Eq. (24) of Ref. 3 which is useful when scattering angle ϕ is close to the critical scattering angle ϕc ≃ 94°. The approximation fails to describe forward region (ϕ < 20°) and the backward region (ϕ ≃ 180°).

Fig. 2
Fig. 2

Like Fig. 1 but with electric field parallel to the scattering plane (j = 2 scattering).

Fig. 3
Fig. 3

Scattering for ka = 25. Mie theory for j = 1 (dotted curve) and j = 2 (solid curve). Dashed curve is I1 from physical optics approximation.

Fig. 4
Fig. 4

Like Fig. 3 but with ka = 5.

Metrics