Abstract

The stress optic coefficient and stress profile in optical fibers have been determined photoelastically using a polariscope having good reproducibility and high sensitivity. The results of the work presented in this paper indicate that the photoelastic behavior may be different in fibers and in bulk glasses. The photoelastically determined clad compression in strengthened fibers was found to correlate well with the strengthening observed in these fibers using tensile tests.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
    [CrossRef]
  2. S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.
  3. I. P. Kaminow, J. R. Simpson, J. B. MacChesney, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.
  4. J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
    [CrossRef] [PubMed]
  5. D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
    [CrossRef]
  6. V. Vali, R. W. Shorthill, M. F. Berg, Appl. Opt. 16, 2605 (1977).
    [CrossRef] [PubMed]
  7. David Brewster, Philos Trans. 105, 60 (1815);Philos Trans.106, 156 (1816);Trans. R. Soc.Edinburgh8, 369 (1818).
    [CrossRef]
  8. E. G. Coker, L. N. G. Filon, Treatise on Photoelasticity (Cambridge U. P., London, 1931).
  9. A. J. Durelli, W. F. Riley, Introduction to Photomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1965).
  10. D. A. Krohn, J. Am. Ceram. Soc. 53, 505 (1970).
    [CrossRef]
  11. M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
    [CrossRef]
  12. P. B. Macedo et al., “Method of Producing Optical Waveguide Fibers,” U.S. Patent3,938,974 (17Feb.1976).
  13. G. D. Redston, J. E. Stanworth, “Glass to Metal Seals,” J. Soc. Glass Technol. 29 (132), 48–76T (1945).
  14. F. A. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  15. R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).
  16. R. S. Rawal, J. C. Hurt, J. Am. Ceram. Soc. 54, 635 (1971).
    [CrossRef]
  17. H. Mueller, “Theory of Photoelasticity in Amorphous Solids,” Physics 6 (6), 179 (June1935).
    [CrossRef]
  18. J. Schroeder, Ph.D Thesis, Catholic U., Washington, D.C. (1974) (unpublished).
  19. D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
    [CrossRef]

1980 (1)

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

1977 (3)

1976 (1)

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

1974 (1)

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

1971 (1)

R. S. Rawal, J. C. Hurt, J. Am. Ceram. Soc. 54, 635 (1971).
[CrossRef]

1970 (1)

D. A. Krohn, J. Am. Ceram. Soc. 53, 505 (1970).
[CrossRef]

1969 (1)

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

1945 (1)

G. D. Redston, J. E. Stanworth, “Glass to Metal Seals,” J. Soc. Glass Technol. 29 (132), 48–76T (1945).

1935 (1)

H. Mueller, “Theory of Photoelasticity in Amorphous Solids,” Physics 6 (6), 179 (June1935).
[CrossRef]

1815 (1)

David Brewster, Philos Trans. 105, 60 (1815);Philos Trans.106, 156 (1816);Trans. R. Soc.Edinburgh8, 369 (1818).
[CrossRef]

Adams, M. J.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Berg, M. F.

Brewster, David

David Brewster, Philos Trans. 105, 60 (1815);Philos Trans.106, 156 (1816);Trans. R. Soc.Edinburgh8, 369 (1818).
[CrossRef]

Bucaro, J. A.

Carome, E. F.

Chantikul, D.

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

Coker, E. G.

E. G. Coker, L. N. G. Filon, Treatise on Photoelasticity (Cambridge U. P., London, 1931).

Cooper, A. R.

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

Dardy, H. D.

Drexhage, M. G.

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

Durelli, A. J.

A. J. Durelli, W. F. Riley, Introduction to Photomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1965).

El-Bayoumi, O. H.

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

Filon, L. N. G.

E. G. Coker, L. N. G. Filon, Treatise on Photoelasticity (Cambridge U. P., London, 1931).

Hill, K. O.

D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
[CrossRef]

Hurt, J. C.

R. S. Rawal, J. C. Hurt, J. Am. Ceram. Soc. 54, 635 (1971).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Johnson, D. C.

D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
[CrossRef]

Jojaji, H.

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

Kaminow, I. P.

I. P. Kaminow, J. R. Simpson, J. B. MacChesney, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Kato, D.

D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
[CrossRef]

Kawasaki, B. S.

D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
[CrossRef]

Krohn, D. A.

D. A. Krohn, J. Am. Ceram. Soc. 53, 505 (1970).
[CrossRef]

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

Lagakos, N.

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

Lawn, B. R.

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

Ma, D. S.

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

MacChesney, J. B.

I. P. Kaminow, J. R. Simpson, J. B. MacChesney, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Macedo, P. B.

P. B. Macedo et al., “Method of Producing Optical Waveguide Fibers,” U.S. Patent3,938,974 (17Feb.1976).

Marshall, D. B.

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

Mohr, R. K.

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

Mueller, H.

H. Mueller, “Theory of Photoelasticity in Amorphous Solids,” Physics 6 (6), 179 (June1935).
[CrossRef]

Norman, S. R.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Payne, D. N.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Rawal, R. S.

R. S. Rawal, J. C. Hurt, J. Am. Ceram. Soc. 54, 635 (1971).
[CrossRef]

Redston, G. D.

G. D. Redston, J. E. Stanworth, “Glass to Metal Seals,” J. Soc. Glass Technol. 29 (132), 48–76T (1945).

Riley, W. F.

A. J. Durelli, W. F. Riley, Introduction to Photomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1965).

Saunders, M. J.

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

Schroeder, J.

J. Schroeder, Ph.D Thesis, Catholic U., Washington, D.C. (1974) (unpublished).

Shorthill, R. W.

Simpson, J. R.

I. P. Kaminow, J. R. Simpson, J. B. MacChesney, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Smith, A. M.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Stanworth, J. E.

G. D. Redston, J. E. Stanworth, “Glass to Metal Seals,” J. Soc. Glass Technol. 29 (132), 48–76T (1945).

Vali, V.

White, H.

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Appl. Opt. (2)

Electron. Lett. (1)

D. C. Johnson, K. O. Hill, B. S. Kawasaki, D. Kato, Electron. Lett. 13, 53 (1977).
[CrossRef]

J. Am. Ceram. So. (1)

D. Chantikul, D. B. Marshall, B. R. Lawn, M. G. Drexhage, J. Am. Ceram. So. 62, 551 (1974).
[CrossRef]

J. Am. Ceram. Soc. (4)

D. A. Krohn, A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).
[CrossRef]

D. A. Krohn, J. Am. Ceram. Soc. 53, 505 (1970).
[CrossRef]

R. K. Mohr, O. H. El-Bayoumi, N. Lagakos, H. Jojaji, D. S. Ma, J. Am. Ceram. Soc. 59, 1127 (1980).

R. S. Rawal, J. C. Hurt, J. Am. Ceram. Soc. 54, 635 (1971).
[CrossRef]

J. Soc. Glass Technol. (1)

G. D. Redston, J. E. Stanworth, “Glass to Metal Seals,” J. Soc. Glass Technol. 29 (132), 48–76T (1945).

Philos Trans. (1)

David Brewster, Philos Trans. 105, 60 (1815);Philos Trans.106, 156 (1816);Trans. R. Soc.Edinburgh8, 369 (1818).
[CrossRef]

Physics (1)

H. Mueller, “Theory of Photoelasticity in Amorphous Solids,” Physics 6 (6), 179 (June1935).
[CrossRef]

Rev. Sci. Instrum. (1)

M. J. Saunders, Rev. Sci. Instrum. 47, 496 (1976).
[CrossRef]

Other (7)

P. B. Macedo et al., “Method of Producing Optical Waveguide Fibers,” U.S. Patent3,938,974 (17Feb.1976).

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

J. Schroeder, Ph.D Thesis, Catholic U., Washington, D.C. (1974) (unpublished).

E. G. Coker, L. N. G. Filon, Treatise on Photoelasticity (Cambridge U. P., London, 1931).

A. J. Durelli, W. F. Riley, Introduction to Photomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1965).

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

I. P. Kaminow, J. R. Simpson, J. B. MacChesney, in Proceedings, Optical Fiber Communications Conference, Amsterdam, 17–19 September 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for measuring stress profile in fibers.

Fig. 2
Fig. 2

Fiber mount for measuring stress optic coefficients.

Fig. 3
Fig. 3

Applied weight vs retardation in a Suprasil II fiber (circles). The straight line is the best linear fit to these data (rms fitting error of 3.7%).

Fig. 4
Fig. 4

Retardation profile in the clad of a fiber (5 in Table II). Clad thickness: 13.5 μm.

Fig. 5
Fig. 5

Stress profile of the clad of the fiber whose retardation profile is shown in Fig. 4. Average clad compression: 22.7 × 107 N/m2 (C = 2.78 brewsters).

Fig. 6
Fig. 6

Fiber excess tensile strength vs average compressive stress of fiber clad. Bars indicate the experimental error of each data point.

Tables (2)

Tables Icon

Table I Summary of Results for Stress Optic Coefficient

Tables Icon

Table II Summary of Results (or Clad Compression

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ z = ( N λ ) / ( C L ) ,
W = π R 2 λ 180 L C = S θ .
C = π λ R 2 180 S L .
C clad = C × β ,
β = E c A c + E c l A c l E c l ( A c + A c l ) .
E = ρ V T 2 3 V L 2 4 V T 2 V L 2 V T 2 ,
F = E c A c + E c l A c l ,
F c l = E c A c l .

Metrics