Abstract

In this paper, we propose a new method of optically implementing digital logic gates capable of performing all logic operations and give the technique for construction of an array of n-bit parallel adders as a typical application circuit. These gates are implemented using a Hughes liquid crystal light valve operated in the parallel off-state configuration. It is found that all possible functions of two binary variables are realizable with these gates, some as bright-true-logic and some as dark-true-logic. Experimental results will be given using the portions of a single liquid crystal light valve demonstrating the feasibility of AND, NOR, XOR, etc. gate arrays. As an example of implementation of combinatorial circuits, a design for an array of binary adders will also be given.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Bleha et al., Opt. Eng. 17, 371 (1978).
  2. D. Casasent, “Coherent Light Valves,” in Applied Optics and Optical Engineering, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980).
    [CrossRef]
  3. U. K. Sengupta, U. H. Gerlack, S. A. Collins, Opt. Lett. 3, 199 (1978).
    [CrossRef] [PubMed]
  4. U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).
  5. D. H. Shaefer, J. P. Strong, Proc. IEEE 65, 129 (1977).
    [CrossRef]
  6. C. C. Guest, T. K. Gaylord, Proc. Soc. Photo-Opt. Instrum. Eng. 185, 42 (1979).
  7. A. Huang, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).
  8. K. Preston, Coherent Optical Computers (McGraw-Hill, New York, 1972).
  9. R. A. Athale, S. H. Lee, Opt. Eng. 18, 513 (1979).
    [CrossRef]
  10. B. H. Soffer et al., Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).
  11. M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).
  12. H. Hacker, Y. Kwon, R. Lontz, I. Lefkowitz, Appl. Opt. 19, 1278 (1980).
    [CrossRef] [PubMed]
  13. H. Hacker, I. Lefkowitz, R. Lontz, Appl. Opt. 19, 3257 (1980).
    [CrossRef] [PubMed]
  14. N. A. Clark, S. T. Lagerwal, Appl. Phys. Lett. 36, 899 (1980).
    [CrossRef]

1980 (6)

U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).

B. H. Soffer et al., Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

H. Hacker, Y. Kwon, R. Lontz, I. Lefkowitz, Appl. Opt. 19, 1278 (1980).
[CrossRef] [PubMed]

H. Hacker, I. Lefkowitz, R. Lontz, Appl. Opt. 19, 3257 (1980).
[CrossRef] [PubMed]

N. A. Clark, S. T. Lagerwal, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

A. Huang, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

1979 (2)

R. A. Athale, S. H. Lee, Opt. Eng. 18, 513 (1979).
[CrossRef]

C. C. Guest, T. K. Gaylord, Proc. Soc. Photo-Opt. Instrum. Eng. 185, 42 (1979).

1978 (2)

1977 (1)

D. H. Shaefer, J. P. Strong, Proc. IEEE 65, 129 (1977).
[CrossRef]

Athale, R. A.

R. A. Athale, S. H. Lee, Opt. Eng. 18, 513 (1979).
[CrossRef]

Bleha, W. P.

W. P. Bleha et al., Opt. Eng. 17, 371 (1978).

Casasent, D.

D. Casasent, “Coherent Light Valves,” in Applied Optics and Optical Engineering, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980).
[CrossRef]

Clark, N. A.

N. A. Clark, S. T. Lagerwal, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Collins, S. A.

U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).

U. K. Sengupta, U. H. Gerlack, S. A. Collins, Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Gaylord, T. K.

C. C. Guest, T. K. Gaylord, Proc. Soc. Photo-Opt. Instrum. Eng. 185, 42 (1979).

Gerlack, U. H.

U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).

U. K. Sengupta, U. H. Gerlack, S. A. Collins, Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Guest, C. C.

C. C. Guest, T. K. Gaylord, Proc. Soc. Photo-Opt. Instrum. Eng. 185, 42 (1979).

Hacker, H.

Huang, A.

A. Huang, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

Kwon, Y.

Lagerwal, S. T.

N. A. Clark, S. T. Lagerwal, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Lee, S. H.

R. A. Athale, S. H. Lee, Opt. Eng. 18, 513 (1979).
[CrossRef]

Lefkowitz, I.

Lontz, R.

Mano, M.

M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).

Preston, K.

K. Preston, Coherent Optical Computers (McGraw-Hill, New York, 1972).

Sengupta, U. K.

U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).

U. K. Sengupta, U. H. Gerlack, S. A. Collins, Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Shaefer, D. H.

D. H. Shaefer, J. P. Strong, Proc. IEEE 65, 129 (1977).
[CrossRef]

Soffer, B. H.

B. H. Soffer et al., Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Strong, J. P.

D. H. Shaefer, J. P. Strong, Proc. IEEE 65, 129 (1977).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. A. Clark, S. T. Lagerwal, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Opt. Eng. (3)

U. H. Gerlack, U. K. Sengupta, S. A. Collins, Opt. Eng. 19, 452 (1980).

R. A. Athale, S. H. Lee, Opt. Eng. 18, 513 (1979).
[CrossRef]

W. P. Bleha et al., Opt. Eng. 17, 371 (1978).

Opt. Lett. (1)

Proc. IEEE (1)

D. H. Shaefer, J. P. Strong, Proc. IEEE 65, 129 (1977).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

C. C. Guest, T. K. Gaylord, Proc. Soc. Photo-Opt. Instrum. Eng. 185, 42 (1979).

A. Huang, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119 (1980).

B. H. Soffer et al., Proc. Soc. Photo-Opt. Instrum. Eng. 232, 128 (1980).

Other (3)

M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).

D. Casasent, “Coherent Light Valves,” in Applied Optics and Optical Engineering, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980).
[CrossRef]

K. Preston, Coherent Optical Computers (McGraw-Hill, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus.

Fig. 2
Fig. 2

Input functions used in the experiments: (a) input function I; (b) input function II.

Fig. 3
Fig. 3

Overlay of the two input patterns showing the location of the Karnaugh map (boxed area).

Fig. 4
Fig. 4

Output pattern showing the NOR operation ( A + B ¯ ) (column 8, Table I).

Fig. 5
Fig. 5

Output pattern for the A B ¯ function (column 2, Table I).

Fig. 6
Fig. 6

Output pattern for the AND (AB) function (column 1, Table I).

Fig. 7
Fig. 7

Output pattern for the XOR (AB) function (column 6, Table I).

Fig. 8
Fig. 8

Output pattern for the XOR ¯ (A ⊙ B) function (column 9, Table I).

Fig. 9
Fig. 9

Logic required for implementing each stage of a binary full adder.

Fig. 10
Fig. 10

Diagram showing the optical path for implementation of an array of n-bit long binary adders.

Tables (3)

Tables Icon

Table I Sixteen Possible Functions of Two Binary Variables

Tables Icon

Table II Functions Demonstrated for Different Excitation and Polarization Settings

Tables Icon

Table III Truth Table for a Binary Full Adder

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S i = A i B i C i
C i + 1 = ( A i B i ) ( A i C i ) ( B i C i ) ,
A B ¯
XOR ¯
B ¯
A + B ¯
A + B ¯
XOR ¯
B ¯
A B ¯
A · B ¯
A B ¯
XOR ¯
XOR ¯

Metrics