Abstract

The implementation of a high resolution Doppler lidar (HRDL) to measure tropospheric winds and turbulence using a high resolution Fabry-Perot optical interferometer is considered. The Fabry-Perot detector system we have chosen is based on the one developed for passive wind measurements on board the Dynamics Explorer satellite. This is a stable high resolution system consisting of an optically contacted plane étalon and a multiring anode detector to scan spatially the image plane of the Fabry-Perot. The Doppler lidar proposed here consists of two transmitters and a receiver in a collinear arrangement. This system enables measurement of a horizontal and the vertical components of the wind in a common volume in space. The volume is determined by the intersection of the field of view of the receiver and the divergence of the laser beam.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum., submitted January (1981).
  2. G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
    [CrossRef]
  3. G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
    [CrossRef]
  4. E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
    [CrossRef]
  5. D. P. Wylie, C. F. Ropelewski, Bull Am. Meterol. Soc. 61 (1980).
    [CrossRef]
  6. L. Elterman, AFCRL-68-0153 (1968).
  7. T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).
  8. V. J. Abreu, Appl. Opt. 18, 2992 (1979).
    [CrossRef] [PubMed]

1980 (2)

D. P. Wylie, C. F. Ropelewski, Bull Am. Meterol. Soc. 61 (1980).
[CrossRef]

T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).

1979 (1)

1975 (1)

E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
[CrossRef]

1974 (1)

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
[CrossRef]

1972 (1)

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Abreu, V. J.

Benedetti-Michelangeli, G.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
[CrossRef]

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Congeduti, F.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
[CrossRef]

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Eloranta, E. W.

E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
[CrossRef]

Elterman, L.

L. Elterman, AFCRL-68-0153 (1968).

Fiocco, G.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
[CrossRef]

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Hays, P. B.

T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum., submitted January (1981).

Kennedy, B. C.

T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum., submitted January (1981).

Killeen, T. L.

T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum., submitted January (1981).

King, J. M.

E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
[CrossRef]

Ropelewski, C. F.

D. P. Wylie, C. F. Ropelewski, Bull Am. Meterol. Soc. 61 (1980).
[CrossRef]

Weinman, J. A.

E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
[CrossRef]

Wylie, D. P.

D. P. Wylie, C. F. Ropelewski, Bull Am. Meterol. Soc. 61 (1980).
[CrossRef]

Appl. Opt. (1)

Atmos. Environ. (1)

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, Atmos. Environ. 8, 793 (1974).
[CrossRef]

Bull Am. Meterol. Soc. (1)

D. P. Wylie, C. F. Ropelewski, Bull Am. Meterol. Soc. 61 (1980).
[CrossRef]

J. Appl. Meteorol. (1)

E. W. Eloranta, J. M. King, J. A. Weinman, J. Appl. Meteorol. 14, 1485 (1975).
[CrossRef]

J. Atmos. Sci. (1)

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

T. L. Killeen, P. B. Hays, B. C. Kennedy, J. Opt. Soc. Am. 70, 1588 (1980).

Other (2)

L. Elterman, AFCRL-68-0153 (1968).

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum., submitted January (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering geometry.

Fig. 2
Fig. 2

Number of photons backscattered per watt of transmitted power, per unit receiver area (cm2) as a function of altitude. The calculation was done for a field of view equal to 3.7 mrad (full cone) and a laser beam divergence equal to 1.6 mrad in the vertical direction and 7.4 mrad in the transverse direction.

Fig. 3
Fig. 3

Typical vertical resolution as a function of altitude. The laser divergence and the field of view are the same as those used in Fig. 2.

Fig. 4
Fig. 4

Design criteria for the HRDL Fabry-Perot interferometer. See text for details.

Fig. 5
Fig. 5

Image plane detector.

Fig. 6
Fig. 6

Two spectrograms superimposed to illustrate the effect of a 7 m/sec Doppler shift as seen by the HRDL interferometer.

Fig. 7
Fig. 7

The integration time necessary to obtain an accuracy of 50 cm/sec in the vertical component of the wind and of 2 m/sec in the horizontal component is shown in contour form. The transmitter and receiver parameters used in the simulation are shown in Table I.

Tables (1)

Tables Icon

Table I Lidar Simulation Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ν i = ν 0 [ 1 ( r ̂ + r ̂ ) · W c ] ,
W y = A y 1 ( c Δ ν 1 ν 0 ) + A y 2 ( c Δ ν 2 ν 0 ) , W z = A z 1 ( c Δ ν 1 ν 0 ) + A z 2 ( c Δ ν 2 ν 0 ) ,
A y 1 = sin θ + sin ϕ 2 D ; A y 2 = ( sin θ + sin ϕ 1 ) D , A z 1 = cos θ cos ϕ 2 D ; A z 2 = ( cos θ cos ϕ 1 ) D , D = ( cos θ cos ϕ 1 ) ( sin θ + sin ϕ 2 ) ( cos θ cos ϕ 2 ) ( sin θ + sin ϕ 1 ) ,
h = y i | cot θ + cot ϕ i | ,
Δ h = h 2 y i ( csc 2 ϕ i δ ϕ υ + csc 2 θ δ θ ) ,
N = λ 0 E T h 0 c β · A ( δ θ 2 16 sin ϕ δ ϕ h ) q ( λ , r ) q ( λ , r ) ,
( 2 δ λ / λ 0 ) θ 2 .
f ( r 12 / θ ) ,
f 2 = ( 18 λ 0 / δ λ ) mm 2 .
E T ( λ ) = E π 1 / 2 α exp ( Δ λ 2 α 2 ) ,
T ( Δ λ ) = ( 1 R 1 + R ) [ 1 + 2 n = 1 R n cos 2 π n ( Δ λ σ + λ 0 θ 0 2 2 σ + λ 0 Δ θ 2 8 σ ) · sinc ( n λ 0 θ 0 Δ θ σ ) ] ,
N i ( λ ) = ( 1 R 1 + R ) λ 0 · E · k · β · A · δ θ 2 · q ( λ , r ) · q ( λ , r ) 192 · h 0 · c · sin ϕ · δ ϕ h × { 1 + 2 n = 1 R n exp ( n 2 π 2 α 2 σ 2 ) cos [ 2 π n × ( Δ λ σ + λ 0 Δ θ 0 2 2 σ + λ 0 Δ θ 2 8 σ ) ] · sinc ( n λ 0 θ 0 Δ θ σ ) }
c Δ ν ν 0 = c Δ λ λ 0 = c λ 0 ( N i 1 N i + 1 ) 2 N max 1 ( N / λ ) max ,
N i = N 0 f ( λ ) + N n
W y = V 0 ( A y 1 N 1 N 01 + A y 2 N 2 N 02 ) , W z = V 0 ( A z 1 N 1 N 01 + A z 2 N 2 N 02 ) ,
V 0 = c 2 λ 0 1 ( f λ ) , Δ N = N i 1 N i + 1 ,
( δ W ¯ y 2 ) 1 / 2 = V 0 [ A y 1 2 N 01 ( 1 + 2 N n 1 N 01 ) + A y 2 2 N 02 ( 1 + 2 N n 2 N 02 ) ] 1 / 2 , ( δ W ¯ z 2 ) 1 / 2 = V 0 [ A z 1 2 N 01 ( 1 + 2 N n 1 N 01 ) + A z 2 2 N 02 ( 1 + 2 N n 2 N 02 ) ] 1 / 2 .

Metrics