Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Blois, J. Invest. Dermatol. 47, 162 (1966).
    [PubMed]
  2. M. S. Blois, Solid State Biophysics,S. J. Wyard, Ed. (McGraw-Hill, New York, 1969).
  3. F. H. Moyer, Ann. N.Y. Acad. Sci. 100, 584 (1963).
  4. M. S. Blois, Photochemical and Photobiological Reviews,K. Smith, Ed. (Plenum, New York, 1978), Vol. 3.
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  6. G. B. Benedek, Appl. Opt. 10, 459 (1971).
    [CrossRef] [PubMed]
  7. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  8. J. McGinniss, P. Proctor, J. Theor. Biol. 39, 677 (1973).
    [CrossRef]
  9. J. McGinniss, Science, 177, 896 (1972).
    [CrossRef]

1973

J. McGinniss, P. Proctor, J. Theor. Biol. 39, 677 (1973).
[CrossRef]

1972

J. McGinniss, Science, 177, 896 (1972).
[CrossRef]

1971

1966

M. S. Blois, J. Invest. Dermatol. 47, 162 (1966).
[PubMed]

1963

F. H. Moyer, Ann. N.Y. Acad. Sci. 100, 584 (1963).

Benedek, G. B.

Blois, M. S.

M. S. Blois, J. Invest. Dermatol. 47, 162 (1966).
[PubMed]

M. S. Blois, Photochemical and Photobiological Reviews,K. Smith, Ed. (Plenum, New York, 1978), Vol. 3.

M. S. Blois, Solid State Biophysics,S. J. Wyard, Ed. (McGraw-Hill, New York, 1969).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

McGinniss, J.

J. McGinniss, P. Proctor, J. Theor. Biol. 39, 677 (1973).
[CrossRef]

J. McGinniss, Science, 177, 896 (1972).
[CrossRef]

Moyer, F. H.

F. H. Moyer, Ann. N.Y. Acad. Sci. 100, 584 (1963).

Proctor, P.

J. McGinniss, P. Proctor, J. Theor. Biol. 39, 677 (1973).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Ann. N.Y. Acad. Sci.

F. H. Moyer, Ann. N.Y. Acad. Sci. 100, 584 (1963).

Appl. Opt.

J. Invest. Dermatol.

M. S. Blois, J. Invest. Dermatol. 47, 162 (1966).
[PubMed]

J. Theor. Biol.

J. McGinniss, P. Proctor, J. Theor. Biol. 39, 677 (1973).
[CrossRef]

Science

J. McGinniss, Science, 177, 896 (1972).
[CrossRef]

Other

M. S. Blois, Solid State Biophysics,S. J. Wyard, Ed. (McGraw-Hill, New York, 1969).

M. S. Blois, Photochemical and Photobiological Reviews,K. Smith, Ed. (Plenum, New York, 1978), Vol. 3.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectrum (sold line) of squid melanin in a KBr pellet. Dashed line shows the spectrum of charcoal, also in a KBr pellet. Comparison of the two curves shows much higher specific absorption of melanin in the UV and visual portion of the spectrum. Below the IR portion of the spectrum (the part shown here) there are broad absorption bands. These are shown in Fig. 3, where the abscissa has been plotted on a log scale in order that a greater wavelength range can be included (adapted Ref. 2).

Fig. 2
Fig. 2

Schematic presentation of the development of the melanin in the melanosome. The earliest stage is shown at the bottom with progressive melanization proceeding toward the top. These later stages of development occur as the tanning enzyme, tyrosinase, infiltrates the melanosome and polymerizes at an increasing number of active sites on the protein. Diagram shown is based on data from the pigment epithelium in mouse fetus (adapted from Moyer3). There is a periodicity of about 65–76 nm of the melanization along the strands, and there may be even a secondary periodicity which varies with the type of granule.

Fig. 3
Fig. 3

Absorption spectrum of squid melanin in KBr pellet (solid line) replotted from Fig. 1 with a log abscissa to allow an extended wavelength scale with the addition of the 2.5–10.0-μm range. Dashed line indicates the theoretical loss in absorption due to Rayleigh scattering (T ∼ λ−4), and dotted line shows the difference spectrum between the two curves. The deviation from Rayleigh scattering shows a weaker absorption in the visible and IR. Indeed, the rise in the relative optical density of the difference spectrum below 700 nm may be due to Mie scattering. Spectrographic data on the squid melanin are from Ref. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α / λ 0.05 ,
Q ext = Im [ 4 × m 2 1 m 2 + 2 + 4 15 X 3 ( m 2 1 m 2 + 2 ) 2 m 4 + 27 m 2 + 38 2 m 2 + 3 ] + X 4 Re [ 8 3 ( m 2 1 m 2 + 2 ) 2 ] + ,
m = ( 4 π i θ / ω ) ,

Metrics