Abstract

A laser-induced fluorescence technique, especially suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide, is described and analyzed. Temperatures below 300 K may be resolved with SNRs of >50:1, using commercially available high-peak-power tunable dye lasers. The method relies on the two-photon excitation of selected ro-vibronic transitions in the NO(A2Σ+, υ′ = 0 ← X2∏, υ″ = 0) γ band. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. SNR estimates are based on a preliminary measurement of the two-photon absorptivity for a selected rotational transition in the NO γ(0,0) band.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Goulard, “Optical Measurements of Thermodynamic Properties in Flow Fields, A Review,” Paper 13, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).
  2. S. A. Self, C. H. Kruger, J. Energy 1, 25 (1977).
    [CrossRef]
  3. C. W. Peterson, AIAA J. 17, 1352 (1979).
    [CrossRef]
  4. J. A. Smith, J. F. Driscoll, “The Electron Beam Fluorescence Technique Applied to Hypersonic Turbulent Flows,” Paper 16, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).
  5. S. Lederman, Prog. Energy Combust. Sci. 3, 1 (1977).
    [CrossRef]
  6. R. J. Hall, A. C. Eckbreth, Proc. Soc. Photo-Opt. Instrum. Eng. 158, 59 (1978).
  7. D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980);R. J. Cattolica, Appl. Opt. 20, 1156 (1981).
    [CrossRef] [PubMed]
  8. R. Goulard, in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penny, Eds. (Plenum, New York, 1974), p. 3.
    [CrossRef]
  9. G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
    [CrossRef]
  10. H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
    [CrossRef]
  11. R. L. McKenzie, J. Chem. Phys. 66, 1457 (1977).
    [CrossRef]
  12. P. C. Jain, J. Phys. 13, 25 (1980).
  13. W. L. Peticolas, Am. Rev. Phys. Chem. 18, 233 (1967).
    [CrossRef]
  14. A. Gold, in Quantum Optics, Proceedings, International School of Physics, E. Fermi Course 42, R. Glauber, Ed. (Academic, New York, 1969), p. 397.
  15. J. M. Worlock, in Laser Handbook, Vol. 2, T. Arecchi, F. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), p. 1323.
  16. H. Mahr, in Quantum Electronics, A. Treatise, Vol. 1A, H. Rabin, C. Tang, Eds. (Academic, New York, 1975), p. 286.
  17. N. Bloembergen, M. D. Levenson, in High-Resolution Laser Spectroscopy, K. Shimoda, Ed. (Springer, New York, 1976), p. 315.
    [CrossRef]
  18. V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, New York, 1977).
  19. R. Salomaa, S. Stenholm, J. Phys. B: 8, 1795 (1975).
    [CrossRef]
  20. R. Salomaa, S. Stenholm, J. Phys. B: 9, 1221 (1976).
    [CrossRef]
  21. R. Salomaa, J. Phys. B: 10, 3005 (1977).
    [CrossRef]
  22. R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
    [CrossRef]
  23. R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
    [CrossRef]
  24. J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
    [CrossRef]
  25. P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
    [CrossRef]
  26. R. Wallenstein, H. Zacharias, Opt. Commun. 25, 363 (1978).
    [CrossRef]
  27. M. Asscher, Y. Haas, Chem. Phys. Lett. 59, 231 (1978).
    [CrossRef]
  28. J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
    [CrossRef]
  29. D. R. Grieser, R. H. Barnes, Appl. Opt. 19, 741 (1980).
    [CrossRef] [PubMed]
  30. A. Yariv, IEEE J. Quantum Electron. QE-13, 943 (1977).
    [CrossRef]
  31. L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
    [CrossRef]
  32. A. G. Gaydon, A. R. Fairbairn, Proc. Phys. Soc. Sect. A. London 67, 474 (1954).
    [CrossRef]
  33. R. Loudon, The Quantum Theory of Light (Oxford U. P., New York, 1973).
  34. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
    [CrossRef]
  35. H. P. Weber, IEEE J. Quantum Electron. QE-7, 189 (1971).
    [CrossRef]
  36. J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
    [CrossRef]
  37. M. Asscher, Y. Haas, J. Chem. Phys. 71, 2724 (1979);A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
    [CrossRef]
  38. R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
    [CrossRef] [PubMed]
  39. J. O. Berg, W. L. Shackleford, Appl. Opt. 18, 2093 (1979).
    [CrossRef] [PubMed]
  40. S. N. Suchard, Ed., Spectroscopic Data, Vol. 1B (Plenum, New York, 1975).
  41. R. G. Tomlinson, E. K. Damon, H. T. Buscher, in Physics of Quantum Electronics (McGraw-Hill, New York, 1966), p. 520.

1980 (5)

P. C. Jain, J. Phys. 13, 25 (1980).

J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
[CrossRef]

L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
[CrossRef]

D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980);R. J. Cattolica, Appl. Opt. 20, 1156 (1981).
[CrossRef] [PubMed]

D. R. Grieser, R. H. Barnes, Appl. Opt. 19, 741 (1980).
[CrossRef] [PubMed]

1979 (5)

R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

J. O. Berg, W. L. Shackleford, Appl. Opt. 18, 2093 (1979).
[CrossRef] [PubMed]

M. Asscher, Y. Haas, J. Chem. Phys. 71, 2724 (1979);A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

C. W. Peterson, AIAA J. 17, 1352 (1979).
[CrossRef]

G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
[CrossRef]

1978 (4)

R. Wallenstein, H. Zacharias, Opt. Commun. 25, 363 (1978).
[CrossRef]

M. Asscher, Y. Haas, Chem. Phys. Lett. 59, 231 (1978).
[CrossRef]

R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
[CrossRef]

R. J. Hall, A. C. Eckbreth, Proc. Soc. Photo-Opt. Instrum. Eng. 158, 59 (1978).

1977 (6)

S. Lederman, Prog. Energy Combust. Sci. 3, 1 (1977).
[CrossRef]

S. A. Self, C. H. Kruger, J. Energy 1, 25 (1977).
[CrossRef]

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

A. Yariv, IEEE J. Quantum Electron. QE-13, 943 (1977).
[CrossRef]

R. L. McKenzie, J. Chem. Phys. 66, 1457 (1977).
[CrossRef]

R. Salomaa, J. Phys. B: 10, 3005 (1977).
[CrossRef]

1976 (2)

R. Salomaa, S. Stenholm, J. Phys. B: 9, 1221 (1976).
[CrossRef]

H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
[CrossRef]

1975 (2)

R. Salomaa, S. Stenholm, J. Phys. B: 8, 1795 (1975).
[CrossRef]

J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
[CrossRef]

1974 (2)

R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
[CrossRef]

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

1971 (1)

H. P. Weber, IEEE J. Quantum Electron. QE-7, 189 (1971).
[CrossRef]

1967 (1)

W. L. Peticolas, Am. Rev. Phys. Chem. 18, 233 (1967).
[CrossRef]

1963 (1)

R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[CrossRef]

1954 (1)

A. G. Gaydon, A. R. Fairbairn, Proc. Phys. Soc. Sect. A. London 67, 474 (1954).
[CrossRef]

Asscher, M.

M. Asscher, Y. Haas, J. Chem. Phys. 71, 2724 (1979);A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

M. Asscher, Y. Haas, Chem. Phys. Lett. 59, 231 (1978).
[CrossRef]

Barnes, R. H.

Berg, J. O.

Bloembergen, N.

N. Bloembergen, M. D. Levenson, in High-Resolution Laser Spectroscopy, K. Shimoda, Ed. (Springer, New York, 1976), p. 315.
[CrossRef]

Bray, R. G.

R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
[CrossRef]

Buscher, H. T.

R. G. Tomlinson, E. K. Damon, H. T. Buscher, in Physics of Quantum Electronics (McGraw-Hill, New York, 1966), p. 520.

Chebotayev, V. P.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, New York, 1977).

Chudzynski, S.

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

Crosley, D. R.

Damon, E. K.

R. G. Tomlinson, E. K. Damon, H. T. Buscher, in Physics of Quantum Electronics (McGraw-Hill, New York, 1966), p. 520.

Dodge, L. G.

L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
[CrossRef]

Driscoll, J. F.

J. A. Smith, J. F. Driscoll, “The Electron Beam Fluorescence Technique Applied to Hypersonic Turbulent Flows,” Paper 16, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).

Dusek, J.

L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
[CrossRef]

Eckbreth, A. C.

R. J. Hall, A. C. Eckbreth, Proc. Soc. Photo-Opt. Instrum. Eng. 158, 59 (1978).

Fairbairn, A. R.

A. G. Gaydon, A. R. Fairbairn, Proc. Phys. Soc. Sect. A. London 67, 474 (1954).
[CrossRef]

Freedman, P. A.

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

Gaydon, A. G.

A. G. Gaydon, A. R. Fairbairn, Proc. Phys. Soc. Sect. A. London 67, 474 (1954).
[CrossRef]

Gelbwachs, J. A.

J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
[CrossRef]

Glauber, R. J.

R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[CrossRef]

Glodz, M.

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

Gold, A.

A. Gold, in Quantum Optics, Proceedings, International School of Physics, E. Fermi Course 42, R. Glauber, Ed. (Academic, New York, 1969), p. 397.

Goulard, R.

R. Goulard, “Optical Measurements of Thermodynamic Properties in Flow Fields, A Review,” Paper 13, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).

R. Goulard, in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penny, Eds. (Plenum, New York, 1974), p. 3.
[CrossRef]

Grieser, D. R.

Haas, Y.

M. Asscher, Y. Haas, J. Chem. Phys. 71, 2724 (1979);A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

M. Asscher, Y. Haas, Chem. Phys. Lett. 59, 231 (1978).
[CrossRef]

Hall, R. J.

R. J. Hall, A. C. Eckbreth, Proc. Soc. Photo-Opt. Instrum. Eng. 158, 59 (1978).

Halpern, J. B.

J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
[CrossRef]

H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
[CrossRef]

Haydon, S. C.

G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
[CrossRef]

Hochstrasser, R. M.

R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
[CrossRef]

R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
[CrossRef]

Jain, P. C.

P. C. Jain, J. Phys. 13, 25 (1980).

Jones, P. F.

J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
[CrossRef]

Krasinski, J.

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

Kruger, C. H.

S. A. Self, C. H. Kruger, J. Energy 1, 25 (1977).
[CrossRef]

Laurendeau, N. M.

Lederman, S.

S. Lederman, Prog. Energy Combust. Sci. 3, 1 (1977).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, New York, 1977).

Levenson, M. D.

N. Bloembergen, M. D. Levenson, in High-Resolution Laser Spectroscopy, K. Shimoda, Ed. (Springer, New York, 1976), p. 315.
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford U. P., New York, 1973).

Lucht, R. P.

Mahr, H.

H. Mahr, in Quantum Electronics, A. Treatise, Vol. 1A, H. Rabin, C. Tang, Eds. (Academic, New York, 1975), p. 286.

Majewski, W.

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

Mcintosh, A. I.

G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
[CrossRef]

McKenzie, R. L.

R. L. McKenzie, J. Chem. Phys. 66, 1457 (1977).
[CrossRef]

Meredith, G. R.

R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
[CrossRef]

Nutt, G. F.

G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
[CrossRef]

Peterson, C. W.

C. W. Peterson, AIAA J. 17, 1352 (1979).
[CrossRef]

Peticolas, W. L.

W. L. Peticolas, Am. Rev. Phys. Chem. 18, 233 (1967).
[CrossRef]

Salomaa, R.

R. Salomaa, J. Phys. B: 10, 3005 (1977).
[CrossRef]

R. Salomaa, S. Stenholm, J. Phys. B: 9, 1221 (1976).
[CrossRef]

R. Salomaa, S. Stenholm, J. Phys. B: 8, 1795 (1975).
[CrossRef]

Self, S. A.

S. A. Self, C. H. Kruger, J. Energy 1, 25 (1977).
[CrossRef]

Shackleford, W. L.

Smith, G. P.

Smith, J. A.

J. A. Smith, J. F. Driscoll, “The Electron Beam Fluorescence Technique Applied to Hypersonic Turbulent Flows,” Paper 16, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).

Stenholm, S.

R. Salomaa, S. Stenholm, J. Phys. B: 9, 1221 (1976).
[CrossRef]

R. Salomaa, S. Stenholm, J. Phys. B: 8, 1795 (1975).
[CrossRef]

Tomlinson, R. G.

R. G. Tomlinson, E. K. Damon, H. T. Buscher, in Physics of Quantum Electronics (McGraw-Hill, New York, 1966), p. 520.

Trommsdorff, H. P.

R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
[CrossRef]

Wallenstein, R.

J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
[CrossRef]

R. Wallenstein, H. Zacharias, Opt. Commun. 25, 363 (1978).
[CrossRef]

Weber, H. P.

H. P. Weber, IEEE J. Quantum Electron. QE-7, 189 (1971).
[CrossRef]

Welge, K. H.

H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
[CrossRef]

Wessel, J. E.

J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
[CrossRef]

R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
[CrossRef]

Worlock, J. M.

J. M. Worlock, in Laser Handbook, Vol. 2, T. Arecchi, F. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), p. 1323.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-13, 943 (1977).
[CrossRef]

Zabielski, M. F.

L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
[CrossRef]

Zacharias, H.

J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
[CrossRef]

R. Wallenstein, H. Zacharias, Opt. Commun. 25, 363 (1978).
[CrossRef]

H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
[CrossRef]

AIAA J. (1)

C. W. Peterson, AIAA J. 17, 1352 (1979).
[CrossRef]

Am. Rev. Phys. Chem. (1)

W. L. Peticolas, Am. Rev. Phys. Chem. 18, 233 (1967).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. A. Gelbwachs, P. F. Jones, J. E. Wessel, Appl. Phys. Lett. 27, 551 (1975).
[CrossRef]

Can. J. Phys. (1)

P. A. Freedman, Can. J. Phys. 55, 1387 (1977).
[CrossRef]

Chem. Phys. Lett. (5)

M. Asscher, Y. Haas, Chem. Phys. Lett. 59, 231 (1978).
[CrossRef]

R. M. Hochstrasser, G. R. Meredith, H. P. Trommsdorff, Chem. Phys. Lett. 53, 423 (1978).
[CrossRef]

R. G. Bray, R. M. Hochstrasser, J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).
[CrossRef]

G. F. Nutt, S. C. Haydon, A. I. Mcintosh, Chem. Phys. Lett. 62, 402 (1979).
[CrossRef]

H. Zacharias, J. B. Halpern, K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Yariv, IEEE J. Quantum Electron. QE-13, 943 (1977).
[CrossRef]

H. P. Weber, IEEE J. Quantum Electron. QE-7, 189 (1971).
[CrossRef]

J. Chem. Phys. (2)

M. Asscher, Y. Haas, J. Chem. Phys. 71, 2724 (1979);A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970).
[CrossRef]

R. L. McKenzie, J. Chem. Phys. 66, 1457 (1977).
[CrossRef]

J. Energy (1)

S. A. Self, C. H. Kruger, J. Energy 1, 25 (1977).
[CrossRef]

J. Mol. Spectrosc. (1)

J. B. Halpern, H. Zacharias, R. Wallenstein, J. Mol. Spectrosc. 79, 1 (1980).
[CrossRef]

J. Phys. (1)

P. C. Jain, J. Phys. 13, 25 (1980).

J. Phys. B: (3)

R. Salomaa, S. Stenholm, J. Phys. B: 8, 1795 (1975).
[CrossRef]

R. Salomaa, S. Stenholm, J. Phys. B: 9, 1221 (1976).
[CrossRef]

R. Salomaa, J. Phys. B: 10, 3005 (1977).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. G. Dodge, J. Dusek, M. F. Zabielski, J. Quant. Spectrosc. Radiat. Transfer 24, 237 (1980).
[CrossRef]

Opt. Commun. (2)

J. Krasinski, S. Chudzynski, W. Majewski, M. Glodz, Opt. Commun. 12, 304 (1974).
[CrossRef]

R. Wallenstein, H. Zacharias, Opt. Commun. 25, 363 (1978).
[CrossRef]

Phys. Rev. (1)

R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[CrossRef]

Proc. Phys. Soc. Sect. A. London (1)

A. G. Gaydon, A. R. Fairbairn, Proc. Phys. Soc. Sect. A. London 67, 474 (1954).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. J. Hall, A. C. Eckbreth, Proc. Soc. Photo-Opt. Instrum. Eng. 158, 59 (1978).

Prog. Energy Combust. Sci. (1)

S. Lederman, Prog. Energy Combust. Sci. 3, 1 (1977).
[CrossRef]

Other (11)

S. N. Suchard, Ed., Spectroscopic Data, Vol. 1B (Plenum, New York, 1975).

R. G. Tomlinson, E. K. Damon, H. T. Buscher, in Physics of Quantum Electronics (McGraw-Hill, New York, 1966), p. 520.

R. Goulard, “Optical Measurements of Thermodynamic Properties in Flow Fields, A Review,” Paper 13, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).

J. A. Smith, J. F. Driscoll, “The Electron Beam Fluorescence Technique Applied to Hypersonic Turbulent Flows,” Paper 16, in AGARD Conference Proceedings 193 on Applications of Non-Intrusive Instrumentation in Fluid Flow Research, AGARD-CP-193 (May1976).

R. Loudon, The Quantum Theory of Light (Oxford U. P., New York, 1973).

R. Goulard, in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penny, Eds. (Plenum, New York, 1974), p. 3.
[CrossRef]

A. Gold, in Quantum Optics, Proceedings, International School of Physics, E. Fermi Course 42, R. Glauber, Ed. (Academic, New York, 1969), p. 397.

J. M. Worlock, in Laser Handbook, Vol. 2, T. Arecchi, F. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), p. 1323.

H. Mahr, in Quantum Electronics, A. Treatise, Vol. 1A, H. Rabin, C. Tang, Eds. (Academic, New York, 1975), p. 286.

N. Bloembergen, M. D. Levenson, in High-Resolution Laser Spectroscopy, K. Shimoda, Ed. (Springer, New York, 1976), p. 315.
[CrossRef]

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

NO(A2Σ+,υ′ = 0 ← X2∏,υ″ = 0) absorption spectra at T = 300 K. Relative line absorptivities are plotted without consideration of spectral overlap from adjacent transitions. Two-photon rotational line intensity factors are from Halpern et al.28

Fig. 2
Fig. 2

Two-photon laser excitation of NO fluorescence.

Fig. 3
Fig. 3

Dual-excitation fluorescence-signal waveform.

Fig. 4
Fig. 4

Dual-excitation laser system.

Fig. 5
Fig. 5

Synthetic rotational line spectrum for the NO(A2Σ+,υ′ = 0 ← X2∏,υ″ = 0) band at 300 K.Line spectral widths are 0.2 cm−1. Identifications give the value of J″ − ½.

Fig. 6
Fig. 6

Fluorescence SNRs for two-photon excitation of the NO(A2Σ+,υ′ = 0 ← X21/2,υ″ = 0), S11 + R21 (J″ = 7½) transition at typical supersonic flow conditions. Concentration is 80-ppm NO in 0.1-amagat N2. Other conditions are given in Table I.

Fig. 7
Fig. 7

Temperature SNRs based on a fluorescence-SNR = 100 for the transition of greatest intensity in the J1,J2 pair.

Tables (1)

Tables Icon

Table I Conditions for the SNR Calculations in Fig. 6

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

0 I 1 ( t ) dt / 0 I 2 ( t ) dt exp [ ( ω 1 + ω 2 ) / k T r ] ,
ξ ( r , t ) = Re [ e ̂ 1 ξ 1 exp ( i ω 1 t ) + e ̂ 2 ξ 2 exp ( i ω 2 t ) ] ,
P ¯ ul = | u | ψ ( r , t ) | 2 ¯ ,
P ¯ ul = | ξ ( r , t ) ξ * ( r , t ) | 2 ¯ 16 2 [ ( ω ul ω 1 ω 2 ) 2 + γ u 2 ] | M ul | 2 ,
| M ul | 2 = | m [ u | μ 2 | m m | μ 1 | l ( ω ml ω 1 ) + u | μ 1 | m m | μ 2 | l ( ω ml ω 2 ) ] | 2 .
G ( 2 ) = | ξ ( r , t ) ξ * ( r , t + τ ) | 2 / | ξ 1 | 2 | ξ 2 | 2 .
P ¯ ul = 4 π 3 | M ul | 2 γ u 2 c 2 n 1 n 2 g ( ω ul ω 1 ω 2 ) G ( 2 ) I 1 ( ω 1 ) I 2 ( ω 2 ) ,
g ( ω ul ω 1 ω 2 ) = 1 π γ u π ( ω ul ω 1 ω 2 ) 2 + γ u 2 .
E u = ω ul N l P ¯ ul ,
( d E u dt ) GAIN = σ ul N l [ I 1 ( ω 1 ) + I 2 ( ω 2 ) ] ,
( d E u dt ) LOSS = γ u E u
σ ul = α ul ( 2 ) n 1 n 2 g ( ω ul ω 1 ω 2 ) G ( 2 ) I 1 I 2 I 1 + I 2 ,
α ul ( 2 ) = 4 π 3 ω ul 2 c 2 | M ul | 2 .
z I ω 1 ( z ) d ω 1 = N l ( 1 β ul ) δ ul I ω 1 I ω 2 d ω 1 d ω 2 , z I ω 2 ( z ) d ω 2 = N l ( 1 β ul ) δ ul I ω 2 I ω 1 d ω 2 d ω 1 ,
β ul = g l N u / g u N l , δ ul = α ul ( 2 ) g ( ω ul ω 1 ω 2 ) G ( 2 )
I ω 1 ( L ) I ω 1 ( 0 ) = I ω 1 ( 0 ) d ω 1 I ω 2 ( 0 ) d ω 2 I ω 1 ( 0 ) d ω 1 I ω 2 ( 0 ) d ω 2 exp { L δ u N l ( 1 β ul ) [ I ω 2 ( 0 ) d ω 2 I ω 1 ( 0 ) d ω 1 ] } ,
[ I ω 1 ( 0 ) I ω 1 ( L ) ] d ω 1 = L δ ul N l ( 1 β ul ) I ω 1 ( 0 ) I ω 2 ( 0 ) d ω 1 d ω 2
1 A 0 d dt E ( ω 1 , ω 2 ) = [ I ω 1 ( 0 ) I ω 1 ( L ) ] d ω 1 + [ I ω 2 ( 0 ) I ω 2 ( L ) ] d ω 2 = L δ ul N l ( 1 β ul ) 2 I ω 1 ( 0 ) I ω 2 ( 0 ) d ω 1 d ω 2 .
I ω ( 0 ) d ω = P L A 0 g ( ω L ω ) d ω ,
1 A 0 d E T dt = L α ul ( 2 ) G ( 2 ) N l ( 1 β ul ) P L P L A 0 2 g ¯ ,
g ¯ = ½ 0 0 2 g ( ω ul ω 1 ω 2 ) g L ( ω L ω 1 ) × g L ( ω L ω 2 ) d ω 1 d ω 2 .
g ¯ = g ( ω ul ω 1 ω 2 ) g L ( ω L ω 1 ) × g L ( ω L ω 2 ) d ( ω L ω 1 ) d ( ω L ω 2 ) .
g ¯ g ( ω ul ω L ω L ) .
g ( ω 0 ω ) = ( 4 ln 2 / π ) 1 / 2 Δ ω exp [ 4 ln 2 ( ω 0 ω Δ ω ) 2 ] ,
g ¯ = ( 4 ln 2 / π Δ ω ul 2 + ω L 2 + Δ ω L 2 ) 1 / 2 × exp [ 4 ln 2 ( ω ul ω L ω L ) 2 Δ ω ul 2 + Δ ω L 2 + Δ ω L 2 ] ,
ω ul d N l dt = 1 A 0 L d E T dt ,
d N u dt = d N t dt ,
N u + N l = N l ° [ 1 + exp ( ω ul / kT ) ] ,
Q L = g ¯ G ( 2 ) A 0 2 0 P L ( t ) P L ( t ) dt ,
Q ul = ω ul / α ul ( 2 ) ,
N l / N l ° = g l / g u + exp [ ( 1 + g l / g u ) Q L / Q ul ] 1 + g l / g u ,
N u / N l ° = 1 exp [ ( 1 + g l / g u ) Q L / Q ul ] 1 + g l / g u .
E f = A 0 L 0 P f ( t ) dt .
P f ( t ) = N u ( t ) u l A u l ω u l N u / N u ,
u l A u l ω u l N u / N u ω 0 / τ f .
1 / τ u = 1 / τ f + 1 / τ c .
N u ( t ) = N u ( 0 ) exp ( t / τ u ) ,
E f = A 0 L N l ° ω 0 1 + τ f / τ c { 1 exp [ ( 1 + g l / g u ) Q L / Q ul 1 + g l / g u } .
α ul ( 2 ) ( 1 + τ f / τ c ) E f / Q L A 0 L N l ° .
SNR = ( ϕ η E f / ω 0 ) 1 / 2 ,
P L A = 2 π A ( z ) 0 I ( z , r ) rdr ,
Q L = Φ L g ¯ G ( 2 ) A 0 2 0 P L ( t ) P L ( t ) dt .
Φ L = A 0 L L / 2 L / 2 dz A ( z ) ,
Φ L = arctan ( L / 2 b ) L / 2 b .
τ f / τ c = C σ x σ NO N x T 1 / 2 ,
E f ( J ) N J ° S J J 2 J + 1 ,
E f ( J 1 ) E f ( J 2 ) ( 2 J 1 + 1 ) ( 2 J 2 + 1 ) exp { θ r T [ J 1 ( J 1 + 1 ) J 2 ( J 2 + 1 ) ] } ,
( 1 + η J 1 J 2 ) 1 = ln ( 1 + J 1 1 J 2 ) θ r T [ J 2 ( J 2 + 1 ) J 1 ( J 1 + 1 ) ] ,
δ = σ ul / F
( dI ) / I = δ FNL ,
dF / dz = δ N l F 2 ,
I ω d ω = ω L g ( ω L ω ) Fd ω ,
δ = δ ul ω L g ( ω L ω ) d ω .
δ 8 π 3 c 2 ω L 2 g ( ω ul 2 ω ) | M ul | 2 G ( 2 ) .

Metrics