Abstract

A laser-induced fluorescence technique, especially suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide, is described and analyzed. Temperatures below 300 K may be resolved with SNRs of >50:1, using commercially available high-peak-power tunable dye lasers. The method relies on the two-photon excitation of selected ro-vibronic transitions in the NO(A2Σ+, υ′ = 0 ← X2∏, υ″ = 0) γ band. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. SNR estimates are based on a preliminary measurement of the two-photon absorptivity for a selected rotational transition in the NO γ(0,0) band.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription