Abstract

Linear arrays of thin membrane (0.5-0.8-μm) pyroelectric PVF2 detectors have been constructed. The size of each element was 0.1 × 3 mm. The arrays were built with twenty-four channels of hybrid self-scanning electronics and packaged in vacuum containers, D* of 1.5 × 109 cm/Hz/W at 10 Hz and thermal cross talk of <15% at 50 Hz were obtained.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Roundy, Appl. Opt. 18, 943 (1979).
    [CrossRef] [PubMed]
  2. N. E. Byer, R. M. Mindock, in Proceedings, IRIS Detector and Imaging Groups, Annapolis, Md. (1978).
  3. Electro-Opt. Syst. Des., Jan. (1978).
  4. S. E. Stokowski, N. E. Byer, Appl. Phys. Lett. 29, 393 (1976).
    [CrossRef]
  5. U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
    [CrossRef]
  6. S. E. Stokowski, Appl. Opt. 15, 1767 (1976).
    [CrossRef] [PubMed]
  7. V. Harris, “The Optical Properties of Metal Blacks and Carbon Blacks,” The Eppley Foundation Series, No. 1, Dec. (1967).
  8. See, for example, P. J. Schneider, Conduction Heat Transfer (Addison-Wesley, Reading, Mass., 1957), pp. 276–278.
  9. C. B. Roundy, Infrared Phys. 19, 507 (1979).
    [CrossRef]
  10. S. E. Stokowsky et al., Infrared Phys. 16, 331 (1976).
    [CrossRef]

1979 (2)

1978 (2)

Electro-Opt. Syst. Des., Jan. (1978).

U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
[CrossRef]

1976 (3)

S. E. Stokowski, N. E. Byer, Appl. Phys. Lett. 29, 393 (1976).
[CrossRef]

S. E. Stokowsky et al., Infrared Phys. 16, 331 (1976).
[CrossRef]

S. E. Stokowski, Appl. Opt. 15, 1767 (1976).
[CrossRef] [PubMed]

1967 (1)

V. Harris, “The Optical Properties of Metal Blacks and Carbon Blacks,” The Eppley Foundation Series, No. 1, Dec. (1967).

Byer, N. E.

S. E. Stokowski, N. E. Byer, Appl. Phys. Lett. 29, 393 (1976).
[CrossRef]

N. E. Byer, R. M. Mindock, in Proceedings, IRIS Detector and Imaging Groups, Annapolis, Md. (1978).

Harris, V.

V. Harris, “The Optical Properties of Metal Blacks and Carbon Blacks,” The Eppley Foundation Series, No. 1, Dec. (1967).

Korn, U.

U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
[CrossRef]

Mindock, R. M.

N. E. Byer, R. M. Mindock, in Proceedings, IRIS Detector and Imaging Groups, Annapolis, Md. (1978).

Rav-Noy, Z.

U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
[CrossRef]

Roundy, C. B.

Schneider, P. J.

See, for example, P. J. Schneider, Conduction Heat Transfer (Addison-Wesley, Reading, Mass., 1957), pp. 276–278.

Shtrikman, S.

U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
[CrossRef]

Stokowski, S. E.

S. E. Stokowski, Appl. Opt. 15, 1767 (1976).
[CrossRef] [PubMed]

S. E. Stokowski, N. E. Byer, Appl. Phys. Lett. 29, 393 (1976).
[CrossRef]

Stokowsky, S. E.

S. E. Stokowsky et al., Infrared Phys. 16, 331 (1976).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. E. Stokowski, N. E. Byer, Appl. Phys. Lett. 29, 393 (1976).
[CrossRef]

Electro-Opt. Syst. Des. (1)

Electro-Opt. Syst. Des., Jan. (1978).

Infrared Phys. (2)

C. B. Roundy, Infrared Phys. 19, 507 (1979).
[CrossRef]

S. E. Stokowsky et al., Infrared Phys. 16, 331 (1976).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Korn, Z. Rav-Noy, S. Shtrikman, Rev. Sci. Instrum. 49, 108 (1978).
[CrossRef]

The Eppley Foundation Series (1)

V. Harris, “The Optical Properties of Metal Blacks and Carbon Blacks,” The Eppley Foundation Series, No. 1, Dec. (1967).

Other (2)

See, for example, P. J. Schneider, Conduction Heat Transfer (Addison-Wesley, Reading, Mass., 1957), pp. 276–278.

N. E. Byer, R. M. Mindock, in Proceedings, IRIS Detector and Imaging Groups, Annapolis, Md. (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Front electrodes at the active area of the PVF2 array. The back electrode is seen as the gray background under the electrodes.

Fig. 2
Fig. 2

Schematic cross section of the PVF2 array.

Fig. 3
Fig. 3

Connection area between the membrane electrodes and the gold on ceramic pads. The arrow (a) marks the step where the membrane has been cut; (b) and (c) arrows mark the limits of a 1-μm metal film which goes over the step and connects the electrodes to gold pads seen at the bottom.

Fig. 4
Fig. 4

Response of the PVF2 array to focused 50-μm spot illumination as a function of air pressure in the container.

Fig. 5
Fig. 5

Schematic description of the multiplexing hybrid electronics.

Fig. 6
Fig. 6

Response of the PVF2 array to step function illumination that is spatially homogeneous. The response is recorded on a memory oscilloscope showing output of many scans superimposed. The vertical spread of the lines at each channel corresponds to the peak-to-peak amplitude of the signal at this channel.

Fig. 7
Fig. 7

Response of a PVF2 detector element with 50-μm He–Ne laser spot illumination of the adjacent detector.

Fig. 8
Fig. 8

Response of the PVF2 array to focused 10−6-W 300-μm spot illumination with 12-Hz frequency. The signal was obtained from a 500 K source focused by an f/1 Ge lens. The spot size was 300 μm at 1/e points. The fixed pattern noise was removed by a microprocessor subtracting the base line on each electronic scan. The output signal is recorded on a memory oscilloscope showing the output of many superimposed scans.

Tables (1)

Tables Icon

Table I Properties of the PVF2 Array

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r / 2 = ( D π f ) 1 / 2 ,

Metrics