Abstract

Extrapolation of PbTe/ii–vi multilayer interference-filter technique from 20 to beyond 40 μm is described and PbTe transparency reviewed; improvements below 20 μm are reported. A composite filter cutting on steeply at 40 μm is described that uses absorptive films of ZnS and As2S3, thin quartz, and supplementary multilayer interference. Absorptive filters are described containing the ii–vi compounds since these are found transparent at wavelengths shorter and longer than their reststrahl.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Alternative cooled photodetectors are not applicable to Galileo; if they were other difficulties would arise from supertransparency in familiar bulk crystal absorbers.
  2. L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).
  3. R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
    [CrossRef]
  4. J. Day, “NFR Filter Investigation,” Ball Aerospace Division, Report F78-12, unpublished.
  5. J. A. Dobrowolski, in Handbook of Optics, W. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), p. 8–1.
  6. F. K. Kneubuhl, Appl. Opt. 8, 505 (1969).
    [CrossRef] [PubMed]
  7. G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
    [CrossRef]
  8. S. E. Whitcomb, J. Keene, Appl. Opt. 19, 197 (1980).
    [CrossRef] [PubMed]
  9. K. R. Armstrong, F. J. Low, Appl. Opt. 13, 425 (1974).
    [CrossRef] [PubMed]
  10. “The Middle Atmosphere as Observed from Balloons, Rockets and Satellites,” Philos. Trans. R. Soc. London, 296 (1980); “Proceedings of the Second International Conference on Infrared Physics,” Infrared Phys. 19, 247 (1979); “Instrumentation in Astronomy” and “Space Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 172 and 183, respectively, (1979).
  11. J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).
  12. A. Hilton, J. Electron. Mater. 2, 211 (1973).
    [CrossRef]
  13. T. S. Moss, Proc. Phys. Soc. London Sect. B 63, 167 (1950).
    [CrossRef]
  14. S. D. Smith, F. S. Ritchie, R. E. V. Chaddock, in Ref. 25, not published otherwise.
  15. C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D: 9, 309, 321 (1976).
    [CrossRef]
  16. J. S. Seeley, R. Hunneman, A. Whatley, Appl. Opt. 18, 3368 (1979).
    [CrossRef] [PubMed]
  17. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), Fig. 6c-53.
  18. Ref. 17, Fig. 6c-25.
  19. J. G. N. Braithwaite, J. Sci. Instrum. 32, 185 (1955); U.K. patent849,341 (1954).
    [CrossRef]
  20. A. F. Turner, R. Walsh, J. Opt. Soc. Am. 51, 484 (1961).
  21. T. S. Moss, Proc. IRE 43, 1869 (1955).
    [CrossRef]
  22. R. J. Cashman, Proc. IRE 47, 1471 (1959).
    [CrossRef]
  23. G. Hass, A. F. Turner, in Methods of Experimental Physics, Vol. 6A, L. Marton, C. Marton, Eds. (Academic, New York, 1959), p. 122.
  24. D. E. Bode, Phys. Thin Films 3, 275 (1966).
  25. S. D. Smith, J. S. Seeley, Multilayer Interference Filters 0.8 to 100 μm, USAF Contract Final Report AF61 (052)-833 (1968); G. Dale Designs, Ltd., 66 Lower Anchor Street, Chelmsford, CM 2 OAU, U.K. (Smith’s prescription comprised substrates held stationary for better control of their temperature, and uniformity restored by rotation of the sources about a common axis.)
  26. J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 I (1970) and subsequent papers with other authors under the generic title “Remote Sounding of Atmospheric Temperature from Satellites”; Proc. R. Soc. London, Ser. A: 320, 35 II (1970), Proc. R. Soc. London, Ser. A: 334, 149 IV (1973).
  27. C. S. Evans, R. Hunneman, J. S. Seeley, A. Whatley, Appl. Opt. 15, 2736 (1976); U.K. patent1,425,941 (1972).
    [CrossRef] [PubMed]
  28. J. S. Seeley, S. D. Smith, Appl. Opt. 5, 81 (1966).
    [CrossRef] [PubMed]
  29. H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).
  30. C. S. Evans, J. S. Seeley, J. de Physique 29-C4, 37 (1968).
  31. J. S. Seeley, C. S. Evans, R. Hunneman, U.K. patent1,285,567 (1969); J. Vac. Sci. Technol. 9, 397 (1972).
  32. MCP Electronic Materials, Ltd., Wembley, U. K.; private communication.
  33. S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
    [CrossRef]
  34. J. N. Zemel, Solid State Surf. Sci. 1, 291 (1969).
  35. Previously vaporized ii–vi material (or sometimes PbO) is implicit in the preparation of PbTe detectors, as described; in our view this leaves a contributing residual atmosphere of vi (since ii–vi dissociate completely when vaporized36) that is able to react additionally to the O2 during subsequent deposition of PbTe.
  36. E. Ritter, R. Hoffman, J. Vac. Sci. Technol. 6, 733 (1969).
    [CrossRef]
  37. O. Simpson, G. B. B. M. Sutherland, Philos. Trans. R. Soc. London Ser. A: 243, 547 (1951).
    [CrossRef]
  38. E. Ritter, Appl. Opt. 15, 2318 (1976); Phys. Thin Films, 8, 1 (1975); E. Ritter, G. Hass, J. Vac. Sci. Technol. 4, 71 (1967); H. K. Pulker, Appl. Opt. 18, 1969 (1979); A. Thelen, International Symposium of Vacuum Thin Film Technology, Uppsala, 1976.
    [CrossRef] [PubMed]
  39. J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).
  40. V. Costich, J. Opt. Soc. Am. 60, 1542 (1970).
  41. J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
    [CrossRef]
  42. Design data for Tschebyschev filters is extracted43 under the constraint of practicability and therefore contains necessary approximations, whereas design data for Tschebyschev antireflection44 and for semireflectors45 is exact but correspondingly impracticable; the latter may therefore be categorized as prototype designs. Performance of Tschebyschev and of layer-matched Herpin filters, as refined, are identically optimum in the passband, so comparison between their detailed designs seems superfluous. We do not know whether this remains the case in strengthening the blocking band, but Tschebyschev’s design ought to be advantageous because of its synthesis. In electronic filter practice an early design method similar to that of Herpin (known as image impedance and due to Zobel) has remained competitive with the synthesis originated by Darlington. Computer refinement is freely applied to both. Whereas their uses have various subtle differences, at the present time these do not appear particularly relevant to optical multilayers.
  43. J. S. Seeley (with co-authors), Proc. Phys. Soc. London, 78, 998 (1961); J. Opt. Soc. Am. 54, 342 (1964); Electron. Lett. 1, 265 (1965); Opt. Acta 20, 641 (1973); and in Refs. 15, 25, 28, and 41.
    [CrossRef]
  44. L. Young, J. Opt. Soc. Am. 51, 967 (1961).
    [CrossRef]
  45. Z. Knittl, Appl. Opt. 6, 331 (1967).
    [CrossRef] [PubMed]
  46. T. Deutsch, in Proceedings of the International Conference of the Physics of Semiconductors, Exeter (Inst. Phys. Phys. Soc., London, 1962), p. 505.
  47. J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.
  48. A. Thelen (with co-author), Phys. Thin Films 5, 47 (1969); Prog. Opt. 8, 203 (1970).
  49. P. W. Baumeister, “Applications of Thin Film Coatings” in Handbook of Optical Design, MIL-HDBK 141 (U.S. GPO, Washington, D.C., 1962).
  50. J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
    [CrossRef]
  51. D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
    [CrossRef]
  52. J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
    [CrossRef] [PubMed]
  53. P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
    [CrossRef] [PubMed]
  54. J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
    [CrossRef]
  55. H. Gourlay, P. A. Lovoi, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 182 (1979); L. G. Clark, J. D. DiBattista, Proc. Soc. Photo-Opt. Instrum. Eng. 121, 11 (1977).

1980 (9)

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

“The Middle Atmosphere as Observed from Balloons, Rockets and Satellites,” Philos. Trans. R. Soc. London, 296 (1980); “Proceedings of the Second International Conference on Infrared Physics,” Infrared Phys. 19, 247 (1979); “Instrumentation in Astronomy” and “Space Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 172 and 183, respectively, (1979).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).

S. E. Whitcomb, J. Keene, Appl. Opt. 19, 197 (1980).
[CrossRef] [PubMed]

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
[CrossRef] [PubMed]

1979 (4)

H. Gourlay, P. A. Lovoi, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 182 (1979); L. G. Clark, J. D. DiBattista, Proc. Soc. Photo-Opt. Instrum. Eng. 121, 11 (1977).

J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
[CrossRef]

J. S. Seeley, R. Hunneman, A. Whatley, Appl. Opt. 18, 3368 (1979).
[CrossRef] [PubMed]

L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).

1978 (2)

G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
[CrossRef]

J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
[CrossRef]

1976 (3)

1974 (3)

S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
[CrossRef]

K. R. Armstrong, F. J. Low, Appl. Opt. 13, 425 (1974).
[CrossRef] [PubMed]

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

1973 (1)

A. Hilton, J. Electron. Mater. 2, 211 (1973).
[CrossRef]

1970 (2)

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 I (1970) and subsequent papers with other authors under the generic title “Remote Sounding of Atmospheric Temperature from Satellites”; Proc. R. Soc. London, Ser. A: 320, 35 II (1970), Proc. R. Soc. London, Ser. A: 334, 149 IV (1973).

V. Costich, J. Opt. Soc. Am. 60, 1542 (1970).

1969 (4)

A. Thelen (with co-author), Phys. Thin Films 5, 47 (1969); Prog. Opt. 8, 203 (1970).

J. N. Zemel, Solid State Surf. Sci. 1, 291 (1969).

E. Ritter, R. Hoffman, J. Vac. Sci. Technol. 6, 733 (1969).
[CrossRef]

F. K. Kneubuhl, Appl. Opt. 8, 505 (1969).
[CrossRef] [PubMed]

1968 (1)

C. S. Evans, J. S. Seeley, J. de Physique 29-C4, 37 (1968).

1967 (1)

1966 (2)

1961 (3)

J. S. Seeley (with co-authors), Proc. Phys. Soc. London, 78, 998 (1961); J. Opt. Soc. Am. 54, 342 (1964); Electron. Lett. 1, 265 (1965); Opt. Acta 20, 641 (1973); and in Refs. 15, 25, 28, and 41.
[CrossRef]

L. Young, J. Opt. Soc. Am. 51, 967 (1961).
[CrossRef]

A. F. Turner, R. Walsh, J. Opt. Soc. Am. 51, 484 (1961).

1959 (1)

R. J. Cashman, Proc. IRE 47, 1471 (1959).
[CrossRef]

1955 (2)

T. S. Moss, Proc. IRE 43, 1869 (1955).
[CrossRef]

J. G. N. Braithwaite, J. Sci. Instrum. 32, 185 (1955); U.K. patent849,341 (1954).
[CrossRef]

1951 (1)

O. Simpson, G. B. B. M. Sutherland, Philos. Trans. R. Soc. London Ser. A: 243, 547 (1951).
[CrossRef]

1950 (1)

T. S. Moss, Proc. Phys. Soc. London Sect. B 63, 167 (1950).
[CrossRef]

Armstrong, K. R.

Baumeister, P. W.

P. W. Baumeister, “Applications of Thin Film Coatings” in Handbook of Optical Design, MIL-HDBK 141 (U.S. GPO, Washington, D.C., 1962).

Bode, D. E.

D. E. Bode, Phys. Thin Films 3, 275 (1966).

Boese, R. W.

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Braithwaite, J. G. N.

J. G. N. Braithwaite, J. Sci. Instrum. 32, 185 (1955); U.K. patent849,341 (1954).
[CrossRef]

Brown, F. G.

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Brownscombe, J. L.

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Carruthers, G. P.

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Cashman, R. J.

R. J. Cashman, Proc. IRE 47, 1471 (1959).
[CrossRef]

Chaddock, R. E. V.

S. D. Smith, F. S. Ritchie, R. E. V. Chaddock, in Ref. 25, not published otherwise.

Costich, V.

V. Costich, J. Opt. Soc. Am. 60, 1542 (1970).

Curtis, P.

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

Davis, B.

G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
[CrossRef]

Day, J.

J. Day, “NFR Filter Investigation,” Ball Aerospace Division, Report F78-12, unpublished.

Delderfield, J.

J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
[CrossRef] [PubMed]

Deutsch, T.

T. Deutsch, in Proceedings of the International Conference of the Physics of Semiconductors, Exeter (Inst. Phys. Phys. Soc., London, 1962), p. 505.

Dobrowolski, J. A.

J. A. Dobrowolski, in Handbook of Optics, W. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), p. 8–1.

Drummond, J. R.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
[CrossRef]

Evans, C. S.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D: 9, 309, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, A. Whatley, Appl. Opt. 15, 2736 (1976); U.K. patent1,425,941 (1972).
[CrossRef] [PubMed]

C. S. Evans, J. S. Seeley, J. de Physique 29-C4, 37 (1968).

J. S. Seeley, C. S. Evans, R. Hunneman, U.K. patent1,285,567 (1969); J. Vac. Sci. Technol. 9, 397 (1972).

Gilland, J.

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Gourlay, H.

H. Gourlay, P. A. Lovoi, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 182 (1979); L. G. Clark, J. D. DiBattista, Proc. Soc. Photo-Opt. Instrum. Eng. 121, 11 (1977).

Hass, G.

G. Hass, A. F. Turner, in Methods of Experimental Physics, Vol. 6A, L. Marton, C. Marton, Eds. (Academic, New York, 1959), p. 122.

Hassig, R. E.

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Hilton, A.

A. Hilton, J. Electron. Mater. 2, 211 (1973).
[CrossRef]

Hoffman, R.

E. Ritter, R. Hoffman, J. Vac. Sci. Technol. 6, 733 (1969).
[CrossRef]

Holah, G. D.

G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
[CrossRef]

Houghton, J. T.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 I (1970) and subsequent papers with other authors under the generic title “Remote Sounding of Atmospheric Temperature from Satellites”; Proc. R. Soc. London, Ser. A: 320, 35 II (1970), Proc. R. Soc. London, Ser. A: 334, 149 IV (1973).

Hunneman, R.

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.

J. S. Seeley, R. Hunneman, A. Whatley, Appl. Opt. 18, 3368 (1979).
[CrossRef] [PubMed]

J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, A. Whatley, Appl. Opt. 15, 2736 (1976); U.K. patent1,425,941 (1972).
[CrossRef] [PubMed]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D: 9, 309, 321 (1976).
[CrossRef]

J. S. Seeley, C. S. Evans, R. Hunneman, U.K. patent1,285,567 (1969); J. Vac. Sci. Technol. 9, 397 (1972).

Jarnot, R. J.

J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
[CrossRef]

Keene, J.

Kneubuhl, F. K.

Knittl, Z.

Lovoi, P. A.

H. Gourlay, P. A. Lovoi, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 182 (1979); L. G. Clark, J. D. DiBattista, Proc. Soc. Photo-Opt. Instrum. Eng. 121, 11 (1977).

Low, F. J.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).

McCarthy, S. L.

S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
[CrossRef]

Mikkor, M.

S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
[CrossRef]

Miller, D. E.

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Morrison, N. D.

G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
[CrossRef]

Moss, T. S.

T. S. Moss, Proc. IRE 43, 1869 (1955).
[CrossRef]

T. S. Moss, Proc. Phys. Soc. London Sect. B 63, 167 (1950).
[CrossRef]

Pellicori, S. F.

L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).

Peskett, G. D.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

Pick, D. R.

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Ritchie, F. S.

S. D. Smith, F. S. Ritchie, R. E. V. Chaddock, in Ref. 25, not published otherwise.

Ritter, E.

Rodgers, C. D.

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

Rogers, C. D.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

Roscoe, H. K.

J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
[CrossRef]

Russell, E. E.

L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).

Schofield, J. T.

J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
[CrossRef] [PubMed]

Seeley, J. S.

J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
[CrossRef]

J. S. Seeley, R. Hunneman, A. Whatley, Appl. Opt. 18, 3368 (1979).
[CrossRef] [PubMed]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D: 9, 309, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, A. Whatley, Appl. Opt. 15, 2736 (1976); U.K. patent1,425,941 (1972).
[CrossRef] [PubMed]

C. S. Evans, J. S. Seeley, J. de Physique 29-C4, 37 (1968).

J. S. Seeley, S. D. Smith, Appl. Opt. 5, 81 (1966).
[CrossRef] [PubMed]

J. S. Seeley (with co-authors), Proc. Phys. Soc. London, 78, 998 (1961); J. Opt. Soc. Am. 54, 342 (1964); Electron. Lett. 1, 265 (1965); Opt. Acta 20, 641 (1973); and in Refs. 15, 25, 28, and 41.
[CrossRef]

J. S. Seeley, C. S. Evans, R. Hunneman, U.K. patent1,285,567 (1969); J. Vac. Sci. Technol. 9, 397 (1972).

S. D. Smith, J. S. Seeley, Multilayer Interference Filters 0.8 to 100 μm, USAF Contract Final Report AF61 (052)-833 (1968); G. Dale Designs, Ltd., 66 Lower Anchor Street, Chelmsford, CM 2 OAU, U.K. (Smith’s prescription comprised substrates held stationary for better control of their temperature, and uniformity restored by rotation of the sources about a common axis.)

Simpson, O.

O. Simpson, G. B. B. M. Sutherland, Philos. Trans. R. Soc. London Ser. A: 243, 547 (1951).
[CrossRef]

Smith, S. D.

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 I (1970) and subsequent papers with other authors under the generic title “Remote Sounding of Atmospheric Temperature from Satellites”; Proc. R. Soc. London, Ser. A: 320, 35 II (1970), Proc. R. Soc. London, Ser. A: 334, 149 IV (1973).

J. S. Seeley, S. D. Smith, Appl. Opt. 5, 81 (1966).
[CrossRef] [PubMed]

S. D. Smith, J. S. Seeley, Multilayer Interference Filters 0.8 to 100 μm, USAF Contract Final Report AF61 (052)-833 (1968); G. Dale Designs, Ltd., 66 Lower Anchor Street, Chelmsford, CM 2 OAU, U.K. (Smith’s prescription comprised substrates held stationary for better control of their temperature, and uniformity restored by rotation of the sources about a common axis.)

S. D. Smith, F. S. Ritchie, R. E. V. Chaddock, in Ref. 25, not published otherwise.

Stewart, K. H.

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Sutherland, G. B. B. M.

O. Simpson, G. B. B. M. Sutherland, Philos. Trans. R. Soc. London Ser. A: 243, 547 (1951).
[CrossRef]

Taylor, F. W.

J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
[CrossRef] [PubMed]

Thelen, A.

A. Thelen (with co-author), Phys. Thin Films 5, 47 (1969); Prog. Opt. 8, 203 (1970).

Turner, A. F.

A. F. Turner, R. Walsh, J. Opt. Soc. Am. 51, 484 (1961).

G. Hass, A. F. Turner, in Methods of Experimental Physics, Vol. 6A, L. Marton, C. Marton, Eds. (Academic, New York, 1959), p. 122.

Twarowski, R. J.

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Wale, M. J.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

Walsh, R.

A. F. Turner, R. Walsh, J. Opt. Soc. Am. 51, 484 (1961).

Watts, L. A.

L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).

Weber, W. H.

S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
[CrossRef]

Whatley, A.

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).

J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.

J. S. Seeley, R. Hunneman, A. Whatley, Appl. Opt. 18, 3368 (1979).
[CrossRef] [PubMed]

J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, A. Whatley, Appl. Opt. 15, 2736 (1976); U.K. patent1,425,941 (1972).
[CrossRef] [PubMed]

Whitcomb, S. E.

Whitney, J.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

Williamson, E. J.

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

Young, L.

Zemel, J. N.

J. N. Zemel, Solid State Surf. Sci. 1, 291 (1969).

Appl. Opt. (8)

IEEE Trans. Geosci. Electron. (2)

J. Delderfield, J. T. Schofield, F. W. Taylor, IEEE Trans. Geosci. Electron. GE-18, 70 (1980); Appl. Opt. 18, 3893 (1979).
[CrossRef] [PubMed]

R. W. Boese, R. J. Twarowski, J. Gilland, R. E. Hassig, F. G. Brown, IEEE Trans. Geosci. Electron. GE-18, 97 (1980); Proc. Soc. Photo-Opt. Instrum. Eng. 126, 95 (1977); Proc. Soc. Photo-Opt. Instrum. Eng. 124, 132 (1977).
[CrossRef]

Infrared Phys. (2)

G. D. Holah, B. Davis, N. D. Morrison, Infrared Phys. 18, 621 (1978); J. Opt. Soc. Am. 67, 971 (1977).
[CrossRef]

J. S. Seeley, R. Hunneman, A. Whatley, Infrared Phys. 19, 429 (1979).
[CrossRef]

J. Appl. Phys. (1)

S. L. McCarthy, W. H. Weber, M. Mikkor, J. Appl. Phys. 45, 4907 (1974).
[CrossRef]

J. de Physique (1)

C. S. Evans, J. S. Seeley, J. de Physique 29-C4, 37 (1968).

J. Electron. Mater. (1)

A. Hilton, J. Electron. Mater. 2, 211 (1973).
[CrossRef]

J. Opt. Soc. Am. (3)

A. F. Turner, R. Walsh, J. Opt. Soc. Am. 51, 484 (1961).

V. Costich, J. Opt. Soc. Am. 60, 1542 (1970).

L. Young, J. Opt. Soc. Am. 51, 967 (1961).
[CrossRef]

J. Phys. D (1)

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D: 9, 309, 321 (1976).
[CrossRef]

J. Sci. Instrum. (1)

J. G. N. Braithwaite, J. Sci. Instrum. 32, 185 (1955); U.K. patent849,341 (1954).
[CrossRef]

J. Vac. Sci. Technol. (1)

E. Ritter, R. Hoffman, J. Vac. Sci. Technol. 6, 733 (1969).
[CrossRef]

Natl. Bur. Stand. Spec. Publ. (1)

J. S. Seeley, R. Hunneman, A. Whatley, Natl. Bur. Stand. Spec. Publ. 574 (1980), p. 118.

Philos. Trans. R. Soc. London (1)

“The Middle Atmosphere as Observed from Balloons, Rockets and Satellites,” Philos. Trans. R. Soc. London, 296 (1980); “Proceedings of the Second International Conference on Infrared Physics,” Infrared Phys. 19, 247 (1979); “Instrumentation in Astronomy” and “Space Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 172 and 183, respectively, (1979).

Philos. Trans. R. Soc. London Ser. A (3)

O. Simpson, G. B. B. M. Sutherland, Philos. Trans. R. Soc. London Ser. A: 243, 547 (1951).
[CrossRef]

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rogers, M. J. Wale, J. Whitney, E. J. Williamson, Philos. Trans. R. Soc. London Ser. A: 296, 219 (1980).
[CrossRef]

D. E. Miller, J. L. Brownscombe, G. P. Carruthers, D. R. Pick, K. H. Stewart, Philos. Trans. R. Soc. London Ser. A: 296, 65 (1980).
[CrossRef]

Phys. Thin Films (2)

A. Thelen (with co-author), Phys. Thin Films 5, 47 (1969); Prog. Opt. 8, 203 (1970).

D. E. Bode, Phys. Thin Films 3, 275 (1966).

Proc. IRE (2)

T. S. Moss, Proc. IRE 43, 1869 (1955).
[CrossRef]

R. J. Cashman, Proc. IRE 47, 1471 (1959).
[CrossRef]

Proc. Phys. Soc. London (1)

J. S. Seeley (with co-authors), Proc. Phys. Soc. London, 78, 998 (1961); J. Opt. Soc. Am. 54, 342 (1964); Electron. Lett. 1, 265 (1965); Opt. Acta 20, 641 (1973); and in Refs. 15, 25, 28, and 41.
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

T. S. Moss, Proc. Phys. Soc. London Sect. B 63, 167 (1950).
[CrossRef]

Proc. R. Soc. London Ser. A (3)

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 I (1970) and subsequent papers with other authors under the generic title “Remote Sounding of Atmospheric Temperature from Satellites”; Proc. R. Soc. London, Ser. A: 320, 35 II (1970), Proc. R. Soc. London, Ser. A: 334, 149 IV (1973).

P. Curtis, J. T. Houghton, G. D. Peskett, C. D. Rodgers, Proc. R. Soc. London Ser. A: 337, 135 (1974); F. W. Taylor, J. T. Houghton, G. Peskett, C. D. Rodgers, E. J. Williamson, Appl. Opt. 11, 135 (1972). See also F. W. Taylor, Appl. Opt. 11, 135 (1972).
[CrossRef] [PubMed]

J. R. Drummond, R. J. Jarnot, H. K. Roscoe, Proc. R. Soc. London Ser. A: 364, 145, 237 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

H. Gourlay, P. A. Lovoi, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 182 (1979); L. G. Clark, J. D. DiBattista, Proc. Soc. Photo-Opt. Instrum. Eng. 121, 11 (1977).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 253, 253 (1980).

L. A. Watts, E. E. Russell, S. F. Pellicori, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 326 (1979).

J. S. Seeley, R. Hunneman, A. Whatley, Proc. Soc. Photo-Opt. Instrum. Eng. 246, 83 (1980).

Solid State Surf. Sci. (1)

J. N. Zemel, Solid State Surf. Sci. 1, 291 (1969).

Other (15)

Previously vaporized ii–vi material (or sometimes PbO) is implicit in the preparation of PbTe detectors, as described; in our view this leaves a contributing residual atmosphere of vi (since ii–vi dissociate completely when vaporized36) that is able to react additionally to the O2 during subsequent deposition of PbTe.

J. S. Seeley, C. S. Evans, R. Hunneman, U.K. patent1,285,567 (1969); J. Vac. Sci. Technol. 9, 397 (1972).

MCP Electronic Materials, Ltd., Wembley, U. K.; private communication.

G. Hass, A. F. Turner, in Methods of Experimental Physics, Vol. 6A, L. Marton, C. Marton, Eds. (Academic, New York, 1959), p. 122.

S. D. Smith, J. S. Seeley, Multilayer Interference Filters 0.8 to 100 μm, USAF Contract Final Report AF61 (052)-833 (1968); G. Dale Designs, Ltd., 66 Lower Anchor Street, Chelmsford, CM 2 OAU, U.K. (Smith’s prescription comprised substrates held stationary for better control of their temperature, and uniformity restored by rotation of the sources about a common axis.)

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).

Alternative cooled photodetectors are not applicable to Galileo; if they were other difficulties would arise from supertransparency in familiar bulk crystal absorbers.

J. Day, “NFR Filter Investigation,” Ball Aerospace Division, Report F78-12, unpublished.

J. A. Dobrowolski, in Handbook of Optics, W. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), p. 8–1.

S. D. Smith, F. S. Ritchie, R. E. V. Chaddock, in Ref. 25, not published otherwise.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), Fig. 6c-53.

Ref. 17, Fig. 6c-25.

P. W. Baumeister, “Applications of Thin Film Coatings” in Handbook of Optical Design, MIL-HDBK 141 (U.S. GPO, Washington, D.C., 1962).

Design data for Tschebyschev filters is extracted43 under the constraint of practicability and therefore contains necessary approximations, whereas design data for Tschebyschev antireflection44 and for semireflectors45 is exact but correspondingly impracticable; the latter may therefore be categorized as prototype designs. Performance of Tschebyschev and of layer-matched Herpin filters, as refined, are identically optimum in the passband, so comparison between their detailed designs seems superfluous. We do not know whether this remains the case in strengthening the blocking band, but Tschebyschev’s design ought to be advantageous because of its synthesis. In electronic filter practice an early design method similar to that of Herpin (known as image impedance and due to Zobel) has remained competitive with the synthesis originated by Darlington. Computer refinement is freely applied to both. Whereas their uses have various subtle differences, at the present time these do not appear particularly relevant to optical multilayers.

T. Deutsch, in Proceedings of the International Conference of the Physics of Semiconductors, Exeter (Inst. Phys. Phys. Soc., London, 1962), p. 505.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Channel-separator coating from Nimbus-5. Reflects at 50 μm due to ZnSe reststrahl and partially at 100 μm due to PbTe. Multilayer-interference action located 11–18 μm. C. S. Evans designed this item, details of which are described in S. D. Smith, G. D. Holah et al., Infrared Detection Techniques for Space Research, V. Manno and J. Ring, Eds. (Reidel, Dordrecht, 1972), pp. 199–218.

Fig. 2
Fig. 2

CdSe/PbTe multilayer spectrum: CdSe content (~3 μm) shows reststrahl. The absence of interference features above 200 cm−1 demonstrates an exact match between Herpin index and Si substrate. CdSe transparency ascribed to special preparation of evaporable material (BDH Chemicals, Ltd).

Fig. 3
Fig. 3

Interference spectrum for epitaxial layer of considerable thickness, from Ref. 33.

Fig. 4
Fig. 4

PbTe/CdSe multilayer, same content as Fig. 3. This low-pass filter component has transmission <0.001% adjacent to 32 μm and must be near to its thickness limit. PbTe cutoff at 3.8 μm entirely due to bandgap absorption.

Fig. 5
Fig. 5

PbTe absorption vs wavelength, from Ref. 33. Solid lines: classical Drude free-carrier calculation. Dashed line: epitaxial layer, slightly p-type. Dot shows best value for narrowband multilayer filter (our fabrication, as discussed in text).

Fig. 6
Fig. 6

Spectrophotometer-type filter at 7.2 μm with Tschebyschev design improvements and new two-layer AR; equiripple over one octave. One principal, one subsidiary stacks.

Fig. 7
Fig. 7

Same as Fig. 6 but at 13 μm. Equiripple necessarily verified in reflection because of Ge substrate absorption. One principal, two subsidiary stacks.

Fig. 8
Fig. 8

Bandpass filter for 8–12-μm atmospheric window: Tschebyschev separate stack design in low-pass, high-pass. Two principal, one subsidiary stacks.

Fig. 9
Fig. 9

ZnS absorption vs wavelength, from Ref. 46.

Fig. 10
Fig. 10

Bandpass filter for Galileo; same design as Fig. 8 (separate stacks). Thin CdTe substrates procured from MCP Electronic Materials, Ltd.

Fig. 11
Fig. 11

A single 2:1 stack. Bandpass filter component intended for Galileo.

Fig. 12
Fig. 12

As2S3/KRS-5 multilayer on KRS-5 substrate. (More than 100 layers in toto, QWOT at ~4 μm.) A.R.: after photoresist antireflection.

Fig. 13
Fig. 13

ZnS/PbTe multilayer on Si substrate, contains ~8 μm of ZnS; QWOT wavelength lies well below region shown.

Fig. 14
Fig. 14

(a) AR system containing QWOT of CdTe at 35 μm on each surface of Si substrate. (b) 0.3 mm of KRS-5. A satisfactory absorption filter can be fabricated from this coated thickness of CdTe, multilayer-deposited with KRS-5 on a thinner (<0.2 mm) KRS-5 substrate so that (b) moves to longer wavelengths.

Fig. 15
Fig. 15

Thin quartz as basis for filter cutting on steeply at 40 μm for Galileo.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

rate of O 2 attachment = constant × O 2 pressure PbTe deposition rate · exp ( E k × temperature ) ,

Metrics