Abstract

A description is given of the design principles, structure, and use of the PEPSIOS (trade mark) spectrometer, a versatile, easily portable, purely interferometric, high resolution short-range scanning instrument consisting essentially of an interference filter and several simultaneously pressure-swept Fabry–Perot etalons in series. In the study of a continuum, where it was necessary to isolate a single order, it has exhibited a luminosity 102 as great as that of a comparable modern grating-etalon combination instrument at the same resolution and is considerably lighter, smaller, and mechanically more stable. Although designed primarily for the photoelectric measurement of the total flux through an axial zone, the instrument has the property of producing a two-dimensional spatially resolved image at high spectroscopic resolution.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dufour, R. Picca, Rev. opt. 24, 19 (1945).
  2. P. Jacquinot, C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 6, 91 (1948).
  3. R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 24, 138 (1953). English translation by R. B. Jacobi, UKAEA Research Group, Harwell 1958/JMR HX 4128.
  4. P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954).
    [CrossRef]
  5. R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 39, 77 (1957).
  6. R. Chabbal, theses, Paris, 1957; Rev. opt. 37, 49 (1958).
  7. H. Chantrel, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 46, 17 (1957).
  8. P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
    [CrossRef]
  9. R. Chabbal, P. Jacquinot, Rev. opt. 40, 157 (1961).
  10. Colloque International sur les Progrès Recents in Spectroscopie Interferentielle, September 9–13 1957.Fifty-one papers in J. Phys. Radium 19, 185–436 (1958).
  11. H. Fizeau, Ann. chim. phys. (3) 66, 429 (1862).
  12. A. Michelson, Am. J. Science 39, 115 (1890); Phil. Mag. 34, 280 (1892).
  13. H. Rubens, R. W. Wood, Phil. Mag. 21, 249 (1911).
  14. P. Fellgett, J. Phys. Radium 19, 187 (1958); J. Phys. Radium 19, 237 (1958).
    [CrossRef]
  15. R. Greenler, J. Opt. Soc. Am. 45, 788 (1955); J. Opt. Soc. Am. 47, 642 (1957).
    [CrossRef]
  16. E. Gehrcke, O. von Baeyer, Ann. Physik (4) 20, 269 (1906).
    [CrossRef]
  17. W. V. Houston, Phys. Rev. 29, 478 (1927).
    [CrossRef]
  18. E. Gehrcke, E. Lau, Z. Tech. Physik 8, 157 (1927).
  19. G. W. Series, Proc. Roy. Soc. (London) A226, 377 (1954).
  20. K. W. Meissner, private communication ca. 1940. We have not found any published account of Meissner’s early work in this field.
  21. C. Fabry, A. Perot, Compt. rend. 126, 34 (1898); Ann. chim. phys. (7) 16, 115 (1899).
  22. O. Lummer, Verhandel Deut. Physikal. Ges. 3, 85 (1901); O. Lummer, E. Gehrcke, Ann. Physik (4) 10, 457 (1903).
    [CrossRef]
  23. F. L. Roesler, PhD thesis, Wisconsin, 1962.
  24. H. C. Burger, P. H. van Cittert, Physica 2, 87 (1935).
    [CrossRef]
  25. C. F. Bruce, R. M. Hill, Australian J. Phys. 14, 64 (1961).
    [CrossRef]
  26. W. R. Bennett, P. J. Kindlmann, Rev. Sci. Instr. 33, 601 (1962).
    [CrossRef]
  27. D. A. Jackson, H. Kuhn, Proc. Roy. Soc. (London) A167, 205 (1938).
  28. J. G. Hirschberg, R. Kadesch, J. Opt. Soc. Am. 48, 177 (1958).
    [CrossRef]
  29. P. Connes, J. Phys. Radium 19, 262 (1958).
    [CrossRef]
  30. P. Baumeister, J. Opt. Soc. Am. 48, 955 (1958).
    [CrossRef]
  31. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Press, New York, 1932), p. 15.
  32. D. H. Rank, J. N. Shearer, J. Opt. Soc. Am. 46, 463 (1956).
    [CrossRef]

1962

W. R. Bennett, P. J. Kindlmann, Rev. Sci. Instr. 33, 601 (1962).
[CrossRef]

1961

R. Chabbal, P. Jacquinot, Rev. opt. 40, 157 (1961).

C. F. Bruce, R. M. Hill, Australian J. Phys. 14, 64 (1961).
[CrossRef]

1960

P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
[CrossRef]

1958

P. Fellgett, J. Phys. Radium 19, 187 (1958); J. Phys. Radium 19, 237 (1958).
[CrossRef]

P. Connes, J. Phys. Radium 19, 262 (1958).
[CrossRef]

J. G. Hirschberg, R. Kadesch, J. Opt. Soc. Am. 48, 177 (1958).
[CrossRef]

P. Baumeister, J. Opt. Soc. Am. 48, 955 (1958).
[CrossRef]

1957

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 39, 77 (1957).

H. Chantrel, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 46, 17 (1957).

1956

1955

1954

P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954).
[CrossRef]

G. W. Series, Proc. Roy. Soc. (London) A226, 377 (1954).

1953

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 24, 138 (1953). English translation by R. B. Jacobi, UKAEA Research Group, Harwell 1958/JMR HX 4128.

1948

P. Jacquinot, C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 6, 91 (1948).

1945

C. Dufour, R. Picca, Rev. opt. 24, 19 (1945).

1938

D. A. Jackson, H. Kuhn, Proc. Roy. Soc. (London) A167, 205 (1938).

1935

H. C. Burger, P. H. van Cittert, Physica 2, 87 (1935).
[CrossRef]

1927

W. V. Houston, Phys. Rev. 29, 478 (1927).
[CrossRef]

E. Gehrcke, E. Lau, Z. Tech. Physik 8, 157 (1927).

1911

H. Rubens, R. W. Wood, Phil. Mag. 21, 249 (1911).

1906

E. Gehrcke, O. von Baeyer, Ann. Physik (4) 20, 269 (1906).
[CrossRef]

1901

O. Lummer, Verhandel Deut. Physikal. Ges. 3, 85 (1901); O. Lummer, E. Gehrcke, Ann. Physik (4) 10, 457 (1903).
[CrossRef]

1898

C. Fabry, A. Perot, Compt. rend. 126, 34 (1898); Ann. chim. phys. (7) 16, 115 (1899).

1890

A. Michelson, Am. J. Science 39, 115 (1890); Phil. Mag. 34, 280 (1892).

1862

H. Fizeau, Ann. chim. phys. (3) 66, 429 (1862).

Baumeister, P.

Bennett, W. R.

W. R. Bennett, P. J. Kindlmann, Rev. Sci. Instr. 33, 601 (1962).
[CrossRef]

Bruce, C. F.

C. F. Bruce, R. M. Hill, Australian J. Phys. 14, 64 (1961).
[CrossRef]

Burger, H. C.

H. C. Burger, P. H. van Cittert, Physica 2, 87 (1935).
[CrossRef]

Chabbal, R.

R. Chabbal, P. Jacquinot, Rev. opt. 40, 157 (1961).

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 39, 77 (1957).

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 24, 138 (1953). English translation by R. B. Jacobi, UKAEA Research Group, Harwell 1958/JMR HX 4128.

R. Chabbal, theses, Paris, 1957; Rev. opt. 37, 49 (1958).

Chantrel, H.

H. Chantrel, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 46, 17 (1957).

Connes, P.

P. Connes, J. Phys. Radium 19, 262 (1958).
[CrossRef]

Dufour, C.

P. Jacquinot, C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 6, 91 (1948).

C. Dufour, R. Picca, Rev. opt. 24, 19 (1945).

Fabry, C.

C. Fabry, A. Perot, Compt. rend. 126, 34 (1898); Ann. chim. phys. (7) 16, 115 (1899).

Fellgett, P.

P. Fellgett, J. Phys. Radium 19, 187 (1958); J. Phys. Radium 19, 237 (1958).
[CrossRef]

Fizeau, H.

H. Fizeau, Ann. chim. phys. (3) 66, 429 (1862).

Gehrcke, E.

E. Gehrcke, E. Lau, Z. Tech. Physik 8, 157 (1927).

E. Gehrcke, O. von Baeyer, Ann. Physik (4) 20, 269 (1906).
[CrossRef]

Greenler, R.

Hill, R. M.

C. F. Bruce, R. M. Hill, Australian J. Phys. 14, 64 (1961).
[CrossRef]

Hirschberg, J. G.

Houston, W. V.

W. V. Houston, Phys. Rev. 29, 478 (1927).
[CrossRef]

Jackson, D. A.

D. A. Jackson, H. Kuhn, Proc. Roy. Soc. (London) A167, 205 (1938).

Jacquinot, P.

R. Chabbal, P. Jacquinot, Rev. opt. 40, 157 (1961).

P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
[CrossRef]

P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954).
[CrossRef]

P. Jacquinot, C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 6, 91 (1948).

Kadesch, R.

Kindlmann, P. J.

W. R. Bennett, P. J. Kindlmann, Rev. Sci. Instr. 33, 601 (1962).
[CrossRef]

Kuhn, H.

D. A. Jackson, H. Kuhn, Proc. Roy. Soc. (London) A167, 205 (1938).

Lau, E.

E. Gehrcke, E. Lau, Z. Tech. Physik 8, 157 (1927).

Lummer, O.

O. Lummer, Verhandel Deut. Physikal. Ges. 3, 85 (1901); O. Lummer, E. Gehrcke, Ann. Physik (4) 10, 457 (1903).
[CrossRef]

Meissner, K. W.

K. W. Meissner, private communication ca. 1940. We have not found any published account of Meissner’s early work in this field.

Michelson, A.

A. Michelson, Am. J. Science 39, 115 (1890); Phil. Mag. 34, 280 (1892).

Perot, A.

C. Fabry, A. Perot, Compt. rend. 126, 34 (1898); Ann. chim. phys. (7) 16, 115 (1899).

Picca, R.

C. Dufour, R. Picca, Rev. opt. 24, 19 (1945).

Rank, D. H.

Roesler, F. L.

F. L. Roesler, PhD thesis, Wisconsin, 1962.

Rubens, H.

H. Rubens, R. W. Wood, Phil. Mag. 21, 249 (1911).

Series, G. W.

G. W. Series, Proc. Roy. Soc. (London) A226, 377 (1954).

Shearer, J. N.

van Cittert, P. H.

H. C. Burger, P. H. van Cittert, Physica 2, 87 (1935).
[CrossRef]

Van Vleck, J. H.

J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Press, New York, 1932), p. 15.

von Baeyer, O.

E. Gehrcke, O. von Baeyer, Ann. Physik (4) 20, 269 (1906).
[CrossRef]

Wood, R. W.

H. Rubens, R. W. Wood, Phil. Mag. 21, 249 (1911).

Am. J. Science

A. Michelson, Am. J. Science 39, 115 (1890); Phil. Mag. 34, 280 (1892).

Ann. chim. phys. (3)

H. Fizeau, Ann. chim. phys. (3) 66, 429 (1862).

Ann. Physik (4)

E. Gehrcke, O. von Baeyer, Ann. Physik (4) 20, 269 (1906).
[CrossRef]

Australian J. Phys.

C. F. Bruce, R. M. Hill, Australian J. Phys. 14, 64 (1961).
[CrossRef]

Compt. rend.

C. Fabry, A. Perot, Compt. rend. 126, 34 (1898); Ann. chim. phys. (7) 16, 115 (1899).

J. Opt. Soc. Am.

J. Phys. Radium

P. Connes, J. Phys. Radium 19, 262 (1958).
[CrossRef]

P. Fellgett, J. Phys. Radium 19, 187 (1958); J. Phys. Radium 19, 237 (1958).
[CrossRef]

J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris)

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 39, 77 (1957).

H. Chantrel, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 46, 17 (1957).

P. Jacquinot, C. Dufour, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 6, 91 (1948).

R. Chabbal, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue (Paris) No. 24, 138 (1953). English translation by R. B. Jacobi, UKAEA Research Group, Harwell 1958/JMR HX 4128.

Phil. Mag.

H. Rubens, R. W. Wood, Phil. Mag. 21, 249 (1911).

Phys. Rev.

W. V. Houston, Phys. Rev. 29, 478 (1927).
[CrossRef]

Physica

H. C. Burger, P. H. van Cittert, Physica 2, 87 (1935).
[CrossRef]

Proc. Roy. Soc. (London)

D. A. Jackson, H. Kuhn, Proc. Roy. Soc. (London) A167, 205 (1938).

G. W. Series, Proc. Roy. Soc. (London) A226, 377 (1954).

Rept. Progr. Phys.

P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).
[CrossRef]

Rev. opt.

R. Chabbal, P. Jacquinot, Rev. opt. 40, 157 (1961).

C. Dufour, R. Picca, Rev. opt. 24, 19 (1945).

Rev. Sci. Instr.

W. R. Bennett, P. J. Kindlmann, Rev. Sci. Instr. 33, 601 (1962).
[CrossRef]

Verhandel Deut. Physikal. Ges.

O. Lummer, Verhandel Deut. Physikal. Ges. 3, 85 (1901); O. Lummer, E. Gehrcke, Ann. Physik (4) 10, 457 (1903).
[CrossRef]

Z. Tech. Physik

E. Gehrcke, E. Lau, Z. Tech. Physik 8, 157 (1927).

Other

F. L. Roesler, PhD thesis, Wisconsin, 1962.

K. W. Meissner, private communication ca. 1940. We have not found any published account of Meissner’s early work in this field.

Colloque International sur les Progrès Recents in Spectroscopie Interferentielle, September 9–13 1957.Fifty-one papers in J. Phys. Radium 19, 185–436 (1958).

R. Chabbal, theses, Paris, 1957; Rev. opt. 37, 49 (1958).

J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Press, New York, 1932), p. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Monochromatization in the PEPSIOS spectrometer by suppression of parasitic light, Secs. IIC, IIID, IIIE. The source is a continuum and the light arbitrarily selected for “σ0”, i.e., for transmission, is yellow light in the neighborhood of the sodium resonance doublet. The light from the source was sent through a filter to make the amplitudes of the peaks approximately uniform. The large digits stand for elements in the train: 0 for the interference filter, with δ1/2σ = 30 K = 11 Å; 1 for an etalon with l1, = 3.000 mm; 2 for an etalon with l2 = 0.930 l1 = 2.790 mm; 3 for an etalon with l3 = 0.5897 l1, = 1.769 mm. The small digits stand for interference order numbers, measured from σ0. For each trace, after an initial tuning to maximize the transmittance of σ0, the pressure in each chamber was kept static and the transmitted light analyzed by means of a grating monochromator; since the grating had an inferior resolution, the traces show the positions, but not the shapes, of the peaks; they are not PEPSIOS spectrometer traces. In trace “1 + 2”, the near equality in amplitude between orders 0, 0 and 100, 93 and the symmetry of the intervening ghost pattern show that the design spacing ratio of 100:93 was effectively attained. The asymmetry of trace “1 + 3”, on the contrary, shows a departure from the ratio 100:59 and a study of the asymmetry of the ghost pattern affords a basis for the quantitative determination of the departure. Traces “1 + 2 + 3” and “0 + 1 + 2 + 3” indicate that effective monochromatism has been attained. The improvement in the ghost system arising out of the departure of l3/l1 from exactly 0.5900 came about in the first instance by accident. The reproduction of Fig. 1 is defective, especially in that it loses certain peaks near order zero and order fourteen of the fifth line (“1 + 2”) and incompletely reproduces certain other material. Line “1 + 2” is practically symmetric, left to right, and every line has a peak of approximately the same size in order zero.

Fig. 2
Fig. 2

The PEPSIOS spectrometer pilot model. (a) Schematic drawing. The parts are numbered as in Secs. IV and V. (b) Photograph. Notice the meter stick at the near right. Ordinarily three etalon chambers are used. When the picture was taken there were four chambers in the train; the top one is shown open with an etalon installed, and the botton one empty.

Fig. 3
Fig. 3

The constant pressure difference control, simplified schematic drawing. A train of M pressure-scanned etalons requires M − 1 such systems.

Fig. 4
Fig. 4

Emission Pepsiogram of the mercury green line, 5461A, taken with the same spacings as Fig. 2, i.e., with a design resolution not quite sufficient to resolve the third and fourth components counting from the red end. The computed components are shown by marks below the zero-intensity line.

Fig. 5
Fig. 5

Absorption of NaI 3 s 2 S ½ - 3 p 2 P ³ / , 5890A, from the continuum by a sodium vapor cell 20 cm thick at about 180°C. The parasitic light of all wavelengths outside the absorbed region yields an amplitude only 4% as great as that from the continuum. Of the two slave chambers used in producing Figs. 4 and 5, only one was automatically controlled as described in Sec. VI; for the other, ΔP was kept constant by a manually controlled valve system following cathetometer observation.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

a = [ 1 + 4 R ( 1 - R ) - 2 sin 2 ( 2 π n l σ cos θ ) ] - 1 ,
Q ( n , θ ) ( 2 n l cos θ ) - 1 .
Q ( 2 l ) - 1 .
N Q / δ 1 / 2 σ .
N R = π R 1 / 2 / ( 1 - R ) .
C = ( 1 + R ) 2 / ( 1 - R ) 2 .
R t σ / δ 1 / 2 σ = N R σ / Q .
L = τ S Ω = π τ S β 2 / 4 ,
1 R t = δ 1 / 2 σ σ = δ ( cos θ ) cos θ = θ 2 2 = β 2 8 β = 2 ( 2 / R t ) 1 / 2 .
L R t = 2 π S τ .
F U / E = δ 1 / 2 σ T ( σ ) a ( σ ) d σ / 0 T ( σ ) a ( σ ) d σ ,
a ( σ - σ 0 ) = a 1 ( σ - σ 0 ) a 2 ( σ - σ 0 ) a M ( σ - σ 0 ) ,
( N / 2 ) M > ˜ R / R f .
a 2 ( σ 0 - σ k ) = a [ Q 2 k ( p - q ) / p ] ,
a 2 ( σ - σ p ) = a { Q 2 [ k ( p - q ) / p - I k ] } = a { Q 2 f k } ,
a { Q 2 k ( p - q ) / p } = a { Q 2 k [ ( p - q ) / p - 1 ] } = a { - Q 2 k q / p } = a { Q 2 k q / p } ,
τ = [ 1 - A / ( 1 - R ) ] 2 ,
T j ( σ ) = [ 1 - A / ( 1 - R ) ] 2 a j ( σ )             j = 1 , 2 , 3
T 123 ( σ ) = T 1 ( σ ) T 2 ( σ ) T 3 ( σ ) t 2 = T 1 T 2 T 3 t 2 ,
T ( σ ) = T 1 T 2 T 3 t 2 ( 1 - R 1 R 2 t 2 ) ( 1 - R 2 R 3 t 2 ) - R 1 R 3 T 2 2 t 4 ,
R j ( σ ) = ( 1 - A ) ( 1 - a ) + A 2 a R / ( 1 - R ) 2 .             j = 1 , 2 , 3
T ( σ ) = T 1 T 2 T 3 t 2 1 - R 1 R 3 T 2 2 t 4 .
( n 2 - 1 ) / ( n 2 + 2 ) = constant × P / T = [ 2 ( - 2 / 6 + ) ] / 3 ,
n = 1 + 1 P ,
λ vac = 2 n l / m = 2 l ( 1 + 1 P ) / m .
a = { 1 + 4 N 2 π - 2 sin 2 [ π σ 0 ( n 0 + δ n ) / Q ] } - 1 = 1 - η ,

Metrics