Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
    [CrossRef]
  2. J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), p. 302.

1958 (1)

F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
[CrossRef]

Darling, W. R.

F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
[CrossRef]

Strong, J.

J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), p. 302.

Tayman, W. P.

F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
[CrossRef]

Washer, F. E.

F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
[CrossRef]

J. Res. Natl. Bur. Std. (1)

F. E. Washer, W. P. Tayman, W. R. Darling, J. Res. Natl. Bur. Std. 61, 509–515 (1958).
[CrossRef]

Other (1)

J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), p. 302.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Moiré fringes.

Fig. 2
Fig. 2

Schematic of test arrangement.

Fig. 3
Fig. 3

Photograph of moiré fringes produced by arrangement of Fig. 2.

Fig. 4
Fig. 4

Method of introducing a deviation of a portion of the image.

Fig. 5
Fig. 5

Photograph of moiré fringes with a deviation introduced as in Fig. 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ S = Δ d / ( 2 sin α / 2 ) .
Δ d = d Δ S / S .
Δ d = 0.063 mm .
Y = t sin i ( 1 - cos i n cos r ) ,

Metrics