Abstract

This paper gives refractive-index values at 24°C for a synthetic and a natural prism of calcium fluoride. Measurements were made by the minimum-deviation method at 46 calibrated wavelengths from 0.23 μ in the ultraviolet to 9.7 μ in the infrared. The indices of the synthetic prism were fitted to a three-term Sellmeier dispersion formula of the form: n2 − 1 = ∑Ajλ2/(λ2 − λj2). Dispersive quantities were computed which estimate the expected relative dispersion, chromatic aberration, and resolution of CaF2 as a function of wavelength. Values of dn/dt are also given. The results of this work are compared with previously reported data.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Landolt-Börnstein, Physik Chem. II, 912 (1923).
  2. W. W. Coblentz, J. Opt. Soc. Am. 4, 444 (1920).
  3. D. C. Stockbarger, M. Early, “Artificial Fluorite,” O.S.R.D. Rept. No. 4690 (December, 1944).
  4. D. C. Stockbarger, J. Opt. Soc. Am. 39, 731 (1949).
    [CrossRef] [PubMed]
  5. O. N. Stavroudis, L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
    [CrossRef]
  6. L. E. Sutton, O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
    [CrossRef]
  7. G. A. Boutry, Instrumental Optics (Interscience, New York, 1962).
  8. R. C. Gore, R. S. McDonald, V. Z. Williams, J. U. White, J. Opt. Soc. Am. 37, 23 (1947).
    [CrossRef]
  9. F. J. Micheli, Ann. Phys. (4) 7, 772 (1902).
    [CrossRef]
  10. E. Liebreich, Verh. deutsch. phys. Ges. 13, 709 (1911).
  11. F. Kohlrausch, Praktischen Physik (B. G. Teubner, Leipzig, 1943), Vol. II, p. 528.

1961 (2)

O. N. Stavroudis, L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[CrossRef]

L. E. Sutton, O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[CrossRef]

1949 (1)

1947 (1)

1923 (1)

Landolt-Börnstein, Physik Chem. II, 912 (1923).

1920 (1)

W. W. Coblentz, J. Opt. Soc. Am. 4, 444 (1920).

1911 (1)

E. Liebreich, Verh. deutsch. phys. Ges. 13, 709 (1911).

1902 (1)

F. J. Micheli, Ann. Phys. (4) 7, 772 (1902).
[CrossRef]

Boutry, G. A.

G. A. Boutry, Instrumental Optics (Interscience, New York, 1962).

Coblentz, W. W.

W. W. Coblentz, J. Opt. Soc. Am. 4, 444 (1920).

Early, M.

D. C. Stockbarger, M. Early, “Artificial Fluorite,” O.S.R.D. Rept. No. 4690 (December, 1944).

Gore, R. C.

Kohlrausch, F.

F. Kohlrausch, Praktischen Physik (B. G. Teubner, Leipzig, 1943), Vol. II, p. 528.

Landolt-Börnstein,

Landolt-Börnstein, Physik Chem. II, 912 (1923).

Liebreich, E.

E. Liebreich, Verh. deutsch. phys. Ges. 13, 709 (1911).

McDonald, R. S.

Micheli, F. J.

F. J. Micheli, Ann. Phys. (4) 7, 772 (1902).
[CrossRef]

Stavroudis, O. N.

L. E. Sutton, O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[CrossRef]

O. N. Stavroudis, L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[CrossRef]

Stockbarger, D. C.

D. C. Stockbarger, J. Opt. Soc. Am. 39, 731 (1949).
[CrossRef] [PubMed]

D. C. Stockbarger, M. Early, “Artificial Fluorite,” O.S.R.D. Rept. No. 4690 (December, 1944).

Sutton, L. E.

O. N. Stavroudis, L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[CrossRef]

L. E. Sutton, O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[CrossRef]

White, J. U.

Williams, V. Z.

Ann. Phys. (4) (1)

F. J. Micheli, Ann. Phys. (4) 7, 772 (1902).
[CrossRef]

J. Opt. Soc. Am. (5)

Physik Chem. (1)

Landolt-Börnstein, Physik Chem. II, 912 (1923).

Verh. deutsch. phys. Ges. (1)

E. Liebreich, Verh. deutsch. phys. Ges. 13, 709 (1911).

Other (3)

F. Kohlrausch, Praktischen Physik (B. G. Teubner, Leipzig, 1943), Vol. II, p. 528.

D. C. Stockbarger, M. Early, “Artificial Fluorite,” O.S.R.D. Rept. No. 4690 (December, 1944).

G. A. Boutry, Instrumental Optics (Interscience, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the modified Gaertner precision spectrometer showing optical path. The prism is rotated at one-half the rotation rate of the telescope assembly by gear system, thus maintaining the condition of minimum deviation for any wavelength. The scanning device drives the assembly which scans the spectrum to identify lines or bands and determines their approximate scale positions.

Fig. 2
Fig. 2

Refractive index of synthetic CaF2 at 24°C as a function of wavelength. The dispersion formula is valid for interpolation over the measured wavelength range.

Fig. 3
Fig. 3

Dispersive characteristics of synthetic CaF2 as a function of wavelength. Relative dispersion reaches a minimum near 1.5 μ. Chromatic aberration decreases as value of [(dn/dλ)/(1 − n)]−1 increases. Expected resolution improves as value of (λdn/dλ)−1 decreases.

Fig. 4
Fig. 4

Comparison of NBS thermal coefficients of index with those of other observers. An average value of −dn/dt for the temperature interval of 15°C to 24°C over the entire measured wavelength range is 8.65 × 10−6.

Fig. 5
Fig. 5

Comparison of computed NBS index values at 20°C of synthetic CaF2 with previously reported values for the natural crystal. The NBS values are represented by the line Δn = 0.

Tables (4)

Tables Icon

Table I Index of Refraction of Synthetic CaF2 and Thermal Coefficient of Index per °C

Tables Icon

Table II Computed Index of Refraction of CaF2 and Residuals (o-c) × 105 at 24°C; Also Thermal Coefficient of Index for Mean Temperature of 19°C

Tables Icon

Table III Constants of the Dispersion Equation at 24°C

Tables Icon

Table IV Computed Refractive Index and Dispersion of CaF2 at 24°C for Regular Wavelength Intervals

Metrics