Abstract

A simple spatial method using a coherent light source and an interferometer is proposed for measuring the group delay time difference between the LP01 and LP11 modes in a dual-mode optical fiber. Experimental results obtained by this method are in good agreement with those obtained by the swept-frequency and pulse methods. Moreover, a group delay time difference of 4 psec is measured. Results suggest that this spatial method can be applied to a short fiber less than 1 m in length and/or small time differences around 1 psec by using a laser diode with a short coherence length.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, M. Ikeda, Y. Kato, unpublished work.
  2. J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
    [Crossref]
  3. K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
    [Crossref]
  4. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 10.
  5. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 7.

1979 (1)

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

1978 (1)

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 10.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 7.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 7.

Ikeda, M.

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

K. Kitayama, M. Ikeda, Y. Kato, unpublished work.

Kato, Y.

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

K. Kitayama, M. Ikeda, Y. Kato, unpublished work.

Kimura, T.

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

Kitayama, K.

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

K. Kitayama, M. Ikeda, Y. Kato, unpublished work.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 7.

Sakai, J.

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

Seikai, S.

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

Uchida, N.

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 10.

IEEE J. Quantum Electron. (1)

K. Kitayama, Y. Kato, S. Seikai, N. Uchida, M. Ikeda, IEEE J. Quantum Electron. QE-15, 6 (1979).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, T. Kimura, IEEE Trans. Microwave Theory Tech. MTT-26, 658 (1978).
[Crossref]

Other (3)

K. Kitayama, M. Ikeda, Y. Kato, unpublished work.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 10.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic setup for measuring group delay time difference between the LP01 and LP11 modes. CLS, coherent light source; O1, O2, microscopic objectives; F, test fiber; P1, Rochon prism; P2, halfwave plate; A1, A2, attenuators; M1, M2, mirrors; HM, half-mirror; SV, silicon vidicon.

Fig. 2
Fig. 2

Photograph of mode patterns of the LP01 and LP11 modes 4 cm after the Rochon prism.

Fig. 3
Fig. 3

Interference fringes produced by two beams of the LP01 and LP11 modes at λ = 850 nm.

Fig. 4
Fig. 4

Measured visibilities for the interference fringe as a function of path difference: (a) at λ = 633 nm; and (b) at λ = 850 nm. 2d = 0 corresponds to the initial setting without the test fiber, where the optical path lengths of arms in a modified Twyman-Green interferometer are the same.

Fig. 5
Fig. 5

Transfer function | H(ω,L) | measured by the swept-frequency method at λ = 633 nm for a 1300-m long test fiber.

Fig. 6
Fig. 6

Output pulse waveform obtained at λ = 850 nm after being transmitted through a 1300-m long fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 Re [ γ 12 ( τ 12 ) ] cos Ω ,
V = ( I max I min ) / ( I max + I min ) ,
V = | γ 12 ( τ 12 ) | .
τ τ 12 / L = 2 d max / c L ,
| H ( ω , L ) | = 2 | cos ( ω τ L / 2 ) | ,
Δ f τ L = 1 .

Metrics