Abstract

The Voyager IR investigation uses a Michelson interferometer with a 4.3-cm−1 spectral resolution in the 180–2500-cm−1 range and a single-channel radiometer for the visible and near-IR, 5000–30,000-cm−1. Both devices share a Cassegrain telescope with a 50-cm diam primary mirror and a 0.25° field of view. Design, calibration, and performance are discussed along with a sample spectrum of Jupiter.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hanel, B. Schlachman, F. D. Clark, C. H. Prokesh, J. B. Taylor, W. M. Wilson, L. Chaney, Appl. Opt. 9, 1767 (1970).
    [Crossref] [PubMed]
  2. R. A. Hanel, B. Schlachman, D. Rodgers, D. Vanous, Appl. Opt. 10, 1376 (1971).
    [Crossref] [PubMed]
  3. R. A. Hanel, B. Schlachman, E. Breihan, R. Bywaters, F. Chapman, M. Rhodes, D. Rodgers, D. Vanous, Appl. Opt. 11, 2625 (1972).
    [Crossref] [PubMed]
  4. M. Forman, W. Steel, G. Vanasse, J. Opt. Soc. Am. 56, 978 (1966).
    [Crossref]
  5. J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
    [Crossref]

1979 (1)

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

1972 (1)

1971 (1)

1970 (1)

1966 (1)

Breihan, E.

Bywaters, R.

Chaney, L.

Chapman, F.

Clark, F. D.

Forman, M.

Fox, K.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Gupta, S.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Hanel, R.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Hanel, R. A.

Kunde, V.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Maguire, W.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Pearl, J.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Ponnamperuma, C.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Prokesh, C. H.

Raulin, F.

J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Nature 280, 755 (1979).
[Crossref]

Rhodes, M.

Rodgers, D.

Schlachman, B.

Steel, W.

Taylor, J. B.

Vanasse, G.

Vanous, D.

Wilson, W. M.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Three modules of the Voyager IRIS. The optics module, center, contains a 50-cm diam telescope and is mounted in this picture on a metal block labeled MJS IRIS. The IR and reference interferometers and the radiometer, mounted behind the primary mirror, are covered with thermal blankets. All the actual flight blankets were black and electrically conducting. The telescope secondary mirror, also obscured by thermal blankets, is mounted at the end of the cylinder protruding from the center of the primary mirror. The small 20° off-axis solar calibration mirror and its reflection in the primary mirror can be seen protruding downward from the center hub of the primary. The small package in the right foreground is the power supply, and the larger enclosure on the left is the electronics module.

Fig. 2
Fig. 2

Optical layout of the Voyager IRIS. The primary and the secondary telescope mirrors form an image of the scene at the field stop. The spherical dichroic mirror transmits short-wave radiation to the radiometer detector and reflects and collimates long-wave radiation to the IR interferometer. For clarity in the drawing both the IR and reference interferometers are rotated 90° about the optical axis between the dichroic mirror and the IR interferometer beam splitter; also, the reference interferometer is not to scale.

Fig. 3
Fig. 3

Configuration of the Voyager IRIS instrument. The instrument is mounted on the spacecraft scan platform as shown. The protective cover was jettisoned several days after launch. In this view, the IR interferometer is seen end-on; i.e., the motion of the Michelson mirror is perpendicular to the paper. The reference interferometer is directly behind the IR interferometer.

Fig. 4
Fig. 4

The Voyager IRIS main IR and reference interferometer configuration. Mirrors mounted on opposite ends of a common motor shaft couple the main and reference interferometers. The motor motion is phase locked to the spacecraft clock. The reference interferometer signal ensures data sampling at precise increments of mirror displacement. The motor scans in one direction and is returned to a predetermined start position at the beginning of each data frame.

Fig. 5
Fig. 5

Voyager IRIS electronics block diagram. Dashed lines indicate location of electronics in the three instrument modules—optics, electronics, and power supply. The right-hand column shows spacecraft interfaces. The electronics in the optics module operates at 200 K and in the electronics and power supply modules at a nominal 285 K.

Fig. 6
Fig. 6

Voyager 1 IRIS interferogram. This interferogram was recorded near closest approach to Jupiter, 5 Mar. 1979, from a distance of 5.6 Jupiter radii.

Fig. 7
Fig. 7

Noise equivalent spectral radiance (NESR) of the Voyager 1 IRIS at Jupiter near encounter.

Fig. 8
Fig. 8

Voyager 1 IRIS Jupiter spectrum between 180 and 1400 cm−1. This spectrum is an average computed from 133 individual interferograms taken before closest approach to Jupiter.

Fig. 9
Fig. 9

Voyager 1 IRIS Jupiter spectrum between 1700 and 2300 cm−1. This portion of the spectrum covers the wave-number range of the so-called 5-μm hot spots.

Tables (1)

Tables Icon

Table I Parameters of the Voyager IR Instrument (IRIS)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = C 2 C 1 C 2 B i ,
NESR = s ( r ) r B i .
S = A Ω g cos θ ω s r B ν s d ν π t ν r ν d B ν s d ν B ν s d ν .

Metrics