Abstract

An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Seals, J. F. Kilber, “NASA Shuttle Atmospheric Multi-User Instrument System,” S.E.E.D., NASA Langley Research Center, Hampton, Va. (1978).
  2. R. M. Schotland, in Proceedings Fourth Symposium on Remote Sensing of the Environment (U. Michigan, Ann Arbor, 1966).
  3. R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  4. T. Kobayashi, H. Inaba, Opt. Quantum Electron. 7, 319 (1975).
    [CrossRef]
  5. M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).
  6. E. E. Remsberg, L. L. Gordley, Appl. Opt. 17, 624 (1978).
    [CrossRef] [PubMed]
  7. M. Elbaum, P. Diament, Appl. Opt. 15, 2268 (1976).
    [CrossRef] [PubMed]
  8. R. T. Menzies, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed.(Springer, New York, 1976), p. 296.
  9. M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
    [CrossRef]
  10. R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
    [CrossRef]
  11. D. B. Rensch, R. K. Long, Appl. Opt. 9, 1563 (1970).
    [CrossRef] [PubMed]
  12. R. K. Schwiesow, R. E. Cupp, V. E. Derr, at Ninth International Laser Radar Conference, Munich (1979).
  13. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  14. U.S. Standard Atmosphere (U.S. GPO, Washington, D.C., 1976).
  15. B. Bolin, W. Bischof, Tellus 22, 431 (1970).
    [CrossRef]
  16. E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).
  17. G. Megie, Appl. Opt. 19, 34 (1980).
    [CrossRef] [PubMed]
  18. G. Megie, R. T. Menzies, Appl. Phys. Lett. 00, 000 (1December1979).
  19. R. T. Menzies, M. T. Chahine, Appl. Opt. 13, 2840 (1976).
    [CrossRef]
  20. T. Aruga, T. Igarashi, Appl. Opt. 15, 261 (1976).
    [CrossRef] [PubMed]
  21. J. M. Cruickshank, Appl. Opt. 18, 290 (1979).
    [CrossRef] [PubMed]
  22. B. A. Greene, B. J. Rye, E. L. Thomas, at Ninth International Laser Radar Conference, Munich (1979).
  23. G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
    [CrossRef]
  24. O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
    [CrossRef]
  25. D. L. Fried, Proc. IEEE 55, 57 (1967).
    [CrossRef]
  26. M. J. Post, Appl. Opt. 18, 2645 (1979).
    [CrossRef] [PubMed]
  27. A. E. Siegman, Proc. IEEE 54, 1530 (1966).

1980 (1)

1979 (3)

1978 (3)

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

E. E. Remsberg, L. L. Gordley, Appl. Opt. 17, 624 (1978).
[CrossRef] [PubMed]

1977 (1)

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

1976 (3)

1975 (1)

T. Kobayashi, H. Inaba, Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

1974 (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1973 (1)

1970 (2)

1967 (1)

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

1966 (1)

A. E. Siegman, Proc. IEEE 54, 1530 (1966).

Allain, J. Y.

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

Aruga, T.

Baumfield, M. L.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Bischof, W.

B. Bolin, W. Bischof, Tellus 22, 431 (1970).
[CrossRef]

Blamont, J. E.

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

Bolin, B.

B. Bolin, W. Bischof, Tellus 22, 431 (1970).
[CrossRef]

Browell, E. V.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Byer, R. L.

Chahine, M. T.

Chanin, M. L.

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

Cruickshank, J. M.

Cupp, R. E.

R. K. Schwiesow, R. E. Cupp, V. E. Derr, at Ninth International Laser Radar Conference, Munich (1979).

Derr, V. E.

R. K. Schwiesow, R. E. Cupp, V. E. Derr, at Ninth International Laser Radar Conference, Munich (1979).

Diament, P.

Elbaum, M.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

M. Elbaum, P. Diament, Appl. Opt. 15, 2268 (1976).
[CrossRef] [PubMed]

Fried, D. L.

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Garbuny, M.

Gasiorek, L. S.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).

Gordley, L. L.

Greene, B. A.

B. A. Greene, B. J. Rye, E. L. Thomas, at Ninth International Laser Radar Conference, Munich (1979).

Hibata, T. S.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

Igarashi, T.

Inaba, H.

T. Kobayashi, H. Inaba, Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Kilber, J. F.

R. K. Seals, J. F. Kilber, “NASA Shuttle Atmospheric Multi-User Instrument System,” S.E.E.D., NASA Langley Research Center, Hampton, Va. (1978).

Kobayashi, T.

T. Kobayashi, H. Inaba, Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Kohno, J.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

Liston, E. M.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).

Long, R. K.

Maeda, M.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

McIlrath, T. J.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Megie, G.

G. Megie, Appl. Opt. 19, 34 (1980).
[CrossRef] [PubMed]

G. Megie, R. T. Menzies, Appl. Phys. Lett. 00, 000 (1December1979).

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

Menzies, R. T.

G. Megie, R. T. Menzies, Appl. Phys. Lett. 00, 000 (1December1979).

R. T. Menzies, M. T. Chahine, Appl. Opt. 13, 2840 (1976).
[CrossRef]

R. T. Menzies, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed.(Springer, New York, 1976), p. 296.

Mirono, M.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

Nagasawa, C.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

Northam, G. B.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Post, M. J.

Proctor, E. K.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).

Remsberg, E. E.

Rensch, D. B.

Russell, P. B.

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

Rye, B. J.

B. A. Greene, B. J. Rye, E. L. Thomas, at Ninth International Laser Radar Conference, Munich (1979).

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

R. M. Schotland, in Proceedings Fourth Symposium on Remote Sensing of the Environment (U. Michigan, Ann Arbor, 1966).

Schwiesow, R. K.

R. K. Schwiesow, R. E. Cupp, V. E. Derr, at Ninth International Laser Radar Conference, Munich (1979).

Seals, R. K.

R. K. Seals, J. F. Kilber, “NASA Shuttle Atmospheric Multi-User Instrument System,” S.E.E.D., NASA Langley Research Center, Hampton, Va. (1978).

Siegman, A. E.

A. E. Siegman, Proc. IEEE 54, 1530 (1966).

Siviter, J. H.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Teich, M. C.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Thomas, E. L.

B. A. Greene, B. J. Rye, E. L. Thomas, at Ninth International Laser Radar Conference, Munich (1979).

Ulchino, O.

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

Wilkerson, T. D.

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

Wright, M. L.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).

Appl. Opt. (9)

Appl. Phys. Lett. (2)

G. Megie, R. T. Menzies, Appl. Phys. Lett. 00, 000 (1December1979).

O. Ulchino, M. Maeda, J. Kohno, T. S. Hibata, C. Nagasawa, M. Mirono, Appl. Phys. Lett. 33, 807 (1978).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Nature (1)

G. Megie, J. Y. Allain, M. L. Chanin, J. E. Blamont, Nature 270, 0000 (1977).
[CrossRef]

Opt. Commun. (1)

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Opt. Quantum Electron. (1)

T. Kobayashi, H. Inaba, Opt. Quantum Electron. 7, 319 (1975).
[CrossRef]

Proc. IEEE (2)

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

A. E. Siegman, Proc. IEEE 54, 1530 (1966).

Tellus (1)

B. Bolin, W. Bischof, Tellus 22, 431 (1970).
[CrossRef]

Other (9)

E. V. Browell, M. L. Baumfield, J. H. Siviter, G. B. Northam, T. D. Wilkerson, T. J. McIlrath, at Eighth International Laser Radar Conference, Drexel U., Philadelphia, Pa. (1977).

B. A. Greene, B. J. Rye, E. L. Thomas, at Ninth International Laser Radar Conference, Munich (1979).

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution by Active Remote Sensing,” Final Report, NAS-11657, Stanford Research Inst., Menlo Park, Calif.NASA CR-132724 (1975).

R. T. Menzies, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed.(Springer, New York, 1976), p. 296.

R. K. Seals, J. F. Kilber, “NASA Shuttle Atmospheric Multi-User Instrument System,” S.E.E.D., NASA Langley Research Center, Hampton, Va. (1978).

R. M. Schotland, in Proceedings Fourth Symposium on Remote Sensing of the Environment (U. Michigan, Ann Arbor, 1966).

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

R. K. Schwiesow, R. E. Cupp, V. E. Derr, at Ninth International Laser Radar Conference, Munich (1979).

U.S. Standard Atmosphere (U.S. GPO, Washington, D.C., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Relative efficiencies of the Rayleigh + Mie backscattering coefficient at three IR wavelengths (1, 3, and 10 μm) as compared with the backscattering coefficient β (0.3 μm) in the UV as a function of the altitude. The relative variations of the molecular (βM), Ref. 12, and aerosol (βa, 0.3 μm), Ref. 24, backscattering coefficients in arbitrary units as a function of altitude are also given.

Fig. 2
Fig. 2

Integrated optical thickness τi(z = 250 km) between the altitude z and the shuttle altitude for different values of wavelength in the UV spectral region.

Fig. 3
Fig. 3

Integrated optical thickness τi(z = 250 km) between altitude z and the shuttle altitude as a function of the frequency offset from line center for different CO2 laser lines in the 9.4-μm band: (a) P(12) line; (b) P(14) line; (c) P(24) line.

Fig. 4
Fig. 4

Variation of the parameter K = τi/(Δτi) (see text) for different altitudes as a function of the frequency offset from the center of the P(12) CO2 laser line in the 9.6-μm band. The wavelength-independent values of K in the UV are plotted for different altitudes on the same scale.

Fig. 5
Fig. 5

(1) Optimum integrated optical thickness τ opt i at UV wavelengths as a function of the parameter X = PB/P22 (see text) for different values of the relative number of laser shots at the on-line (N1) and off-line (N2) wavelengths: (a) N1 = N2; (b) N1 = N2 exp(τi). (2) Relative variation of the number density accuracy between daytime and nighttime measurements as a function of the parameter X for the UV spectral region. [The laser wavelength is assumed to be optimized for each altitude level according to (1).]

Fig. 6
Fig. 6

Optimum local optical thickness Δ τ opt i at IR wavelengths as a function of the integrated optical thickness τi for two values of the relative number of laser shots at the on-line (N1) and off-line (N2) wavelengths: (a) N1 = N2; (b) N1/N2 optimum as given by Eq. (19) for coherent (heterodyne) detection.

Fig. 7
Fig. 7

Optimum values of the parameter Y = (2N)1/2S22[(δni)/(ni)] (see text) as a function of altitude for different spectral regions and detection schemes: (a) UV shot-noise-limited; (b) UV background-noise-limited; (c) IR coherent detection (quantum-noise-limited). (This parameter relies on the accuracy of the measurement to the off-line SNR for an integration over a total number 2N of laser shots.)

Fig. 8
Fig. 8

Integration time(s) or horizontal resolution (km) required to perform a measurement of the ozone number density with a relative accuracy of 10% for a vertical resolution of 1 km (see Table I for lidar parameters) in the case of a vertical sounding: (a) nighttime UV measurements (shot-noise-limited detection); (b) daytime UV measurements (Background-noise-limited detection); (c) night- or daytime IR measurements (quantum-noise-limited detection). These results correspond to an optimization of the lidar parameters at each altitude level (see text also for impact of a variation of the lidar parameters on the integration time). (The altitude of the shuttle orbit is 250 km.)

Tables (1)

Tables Icon

Table I Lidar Parameters Assumed for Both UV and IR Laser Systems for Comparative Analysis.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

P λ R = P e · β λ R · c t L 2 · A R 2 · η 2 exp [ 2 ( τ λ R e + τ λ R i ) ] ,
τ λ R i
τ λ R i = 0 R σ i ( λ , R ) η i ( R ) d R .
τ λ R e
2 ( Δ τ 1 i Δ τ 2 i ) = ln P 22 P 11 P 12 P 21 + ln β 12 β 21 β 22 β 11 2 ( Δ τ 1 e Δ τ 2 e ) ,
Δ τ i = 1 2 ln P 22 P 11 P 12 P 21 .
δ n i n i = 1 2 Δ τ 1 i { j , k S j k 2 } 1 / 2 ,
S j k = N j k ( N j k + N B + N D ) 1 / 2 ,
N j k = P j k h ν η 1 · 2 Δ R c
N B = P B h ν η 1 2 Δ R c
( N D ) 1 / 2 h ν = P N D · 2 Δ R c .
δ n i n i = 1 2 Δ τ i ( S 11 2 + S 12 2 N 1 + S 21 2 + S 22 2 N 2 ) 1 / 2 .
K = τ 1 i τ 2 i Δ τ 1 i Δ τ 2 i X = N B + N D N j k = P B + P N D h ν η 1 2 Δ R c P j k ,
δ n i n i = K 2 S 22 1 τ i ( 1 + X ) 1 / 2 { exp ( 2 τ i ) [ 1 + exp ( 2 τ i K ) ] + X exp ( 4 τ i ) [ 1 + exp ( 4 τ i K ) ] N 1 + 2 ( 1 + X ) N 2 } 1 / 2
S j k = P j k { h ν η 1 ( 1 + P B P L O ) + k ( T M + T I F ) G } B I F + P j k · ( 2 Δ R c t L ) 1 / 2 ,
G = P L O 2 G D ( η 1 e h ν ) 2 1 1 + ( ν / ν c ) 2 ,
P N Q = h ν η 1 ( B I F c 2 Δ R ) 1 / 2 .
δ n i n i = K 2 S 22 1 τ i { exp ( 4 τ i ) [ 1 + exp ( 4 τ i K ) ] N 1 + 2 N 2 } 1 / 2 .
δ ( Δ τ i ) Δ τ i = 2 Δ τ i ( 1 m 4 ) ( 1 H H a ) · Δ R H · β m β a ( β m + β a ) 2 · Δ λ λ ,
δ ( Δ τ i ) Δ τ i = ( m Δ τ a + 4 Δ τ m ) Δ τ i · Δ λ λ ,
Δ λ λ = Δ ν ν = inf [ 2 × 10 3 ( 1 + ρ ) 2 ρ ; 6.25 × 10 4 ( ρ + 2 ) Δ τ m ] ,
N 1 / N 2 ( incoherent ) = exp ( τ i ) [ 1 + X exp ( 2 τ i ) 1 + X ] 1 / 2 ; N 1 / N 2 ( coherent ) = exp ( 2 τ i ) .
δ n i n i = 2.87 K ( 2 N ) 1 / 2 S 22 ,
δ n i n i = 2.54 K ( 2 N ) 1 / 2 S 22 ,
K = z 0 n i ( z ) dz n i ( z 0 ) · Δ z ,
( δ n i / n i ) day ( δ n i / n i ) night { = { ( 1 + X ) + exp ( 2 τ i ) [ 1 + X exp ( 2 τ i ) ] 1 + exp ( 2 τ i ) } 1 / 2 if N 1 = N 2 = ( 1 + X ) 1 / 2 + exp ( τ i ) ( 1 + X exp ( 2 τ i ) 1 / 2 1 + exp ( τ i ) if N 1 = N 2 exp ( τ i ) .
δ n i n i = 1 S 22 1 2 Δ τ i { exp ( 4 τ i ) [ 1 + exp ( 4 Δ τ i ) ] N 1 + 2 N 2 } 1 / 2 .
N 1 N 2 = exp ( 2 τ i ) ( 1 + exp ( 4 Δ τ i ) 2 ) 1 / 2 ,
δ n i n i = 1 ( 2 N ) 1 / 2 S 22 · 1 ( 2 ) 1 / 2 · Δ τ i × { 1 + exp ( 2 τ i ) [ 1 + exp ( 4 Δ τ i ) 2 ] 1 / 2 }
δ n i n i = 1 ( 2 N ) 1 / 2 S 22 · 1 Δ τ i × { 1 + exp ( 4 τ i ) [ 1 + exp ( 4 Δ τ i ) 2 ] } 1 / 2 .
δ n i n i = 145 ( 2 N ) 1 / 2 S 22 ( N 1 / N 2 optimized ) , δ n i n i = 180 ( 2 N ) 1 / 2 S 22 ( N 1 / N 2 = 1 ) .
S 22 = P 22 ( P 22 + P B ) 1 / 2 .

Metrics