Abstract

Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure absorbers at longer IR wavelengths.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).
  2. C. Acquista, Appl. Opt. 17, 3851 (1978).
    [CrossRef] [PubMed]
  3. H. R. Carlon, Appl. Opt. 18, 1372 (1979).
    [CrossRef] [PubMed]
  4. H. R. Carlon, Appl. Opt. 1, 603 (1962).
    [CrossRef]
  5. H. R. Carlon, D. H. Anderson, M. E. Milham, T. L. Tarnove, R. H. Frickel, I. Sindoni, Appl. Opt. 16, 1598 (1977).
    [CrossRef] [PubMed]
  6. F. E. Volz, Appl. Opt. 11, 755 (1972).
    [CrossRef] [PubMed]
  7. F. E. Volz, Appl. Opt. 12, 564 (1973).
    [CrossRef] [PubMed]
  8. J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
    [CrossRef]
  9. M. R. Querry, G. Osborne, K. Lies, R. Jordan, R. M. Coveney, Appl. Opt. 17, 353 (1978).
    [CrossRef] [PubMed]
  10. D. F. Flanigan, H. P. DeLong, Appl. Opt. 10, 51 (1971).
    [CrossRef] [PubMed]
  11. E. M. Patterson, Appl. Opt. 16, 2414 (1977).
    [CrossRef] [PubMed]
  12. S. A. Schleusener, J. D. Lindberg, K. O. White, R. L. Johnson, Appl. Opt. 15, 2546 (1976).
    [CrossRef] [PubMed]
  13. S. G. Jennings, R. P. Pinnick, J. B. Gillespie, Appl. Opt. 18, 1368 (1979).
    [CrossRef] [PubMed]
  14. D. A. Gillette, T. R. Walker, Soil Sci. 123, 97 (1977).
    [CrossRef]
  15. G. Millot, Sci. Am. 240, No. 4, 109 (April1979,)
    [CrossRef]
  16. S. S. Ballard, W. L. Wolfe, Appl. Opt. 1, 547 (1962);see “Lopair,” p. 551.
    [CrossRef]
  17. R. E. Engelhardt, G. W. Knebel, “Characteristics of the Dust Environment in the Vicinity of Military Activities,” Report AR-642 (AD665439), U.S. Army Mobility Equipment R&D Center, Ft. Belvoir, VA 22060 (Jan.1968).
  18. H. R. Carlon, Appl. Opt. 18, 3610 (1979).
    [CrossRef] [PubMed]

1979 (4)

1978 (2)

1977 (3)

1976 (1)

1973 (2)

F. E. Volz, Appl. Opt. 12, 564 (1973).
[CrossRef] [PubMed]

J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
[CrossRef]

1972 (1)

1971 (1)

1962 (2)

1908 (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Acquista, C.

Anderson, D. H.

Ballard, S. S.

Carlon, H. R.

Coveney, R. M.

DeLong, H. P.

Engelhardt, R. E.

R. E. Engelhardt, G. W. Knebel, “Characteristics of the Dust Environment in the Vicinity of Military Activities,” Report AR-642 (AD665439), U.S. Army Mobility Equipment R&D Center, Ft. Belvoir, VA 22060 (Jan.1968).

Flanigan, D. F.

Frickel, R. H.

Gillespie, J. B.

Gillette, D. A.

D. A. Gillette, T. R. Walker, Soil Sci. 123, 97 (1977).
[CrossRef]

Jennings, S. G.

Johnson, R. L.

Jordan, R.

Khare, B. N.

J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
[CrossRef]

Knebel, G. W.

R. E. Engelhardt, G. W. Knebel, “Characteristics of the Dust Environment in the Vicinity of Military Activities,” Report AR-642 (AD665439), U.S. Army Mobility Equipment R&D Center, Ft. Belvoir, VA 22060 (Jan.1968).

Lies, K.

Lindberg, J. D.

Mie, G.

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Milham, M. E.

Millot, G.

G. Millot, Sci. Am. 240, No. 4, 109 (April1979,)
[CrossRef]

Osborne, G.

Patterson, E. M.

Pinnick, R. P.

Pollack, J. B.

J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
[CrossRef]

Querry, M. R.

Schleusener, S. A.

Sindoni, I.

Tarnove, T. L.

Toon, O. B.

J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
[CrossRef]

Volz, F. E.

Walker, T. R.

D. A. Gillette, T. R. Walker, Soil Sci. 123, 97 (1977).
[CrossRef]

White, K. O.

Wolfe, W. L.

Ann. Phys. (Leipzig) (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Appl. Opt. (13)

Icarus (1)

J. B. Pollack, O. B. Toon, B. N. Khare, Icarus 19, 372 (1973).
[CrossRef]

Sci. Am. (1)

G. Millot, Sci. Am. 240, No. 4, 109 (April1979,)
[CrossRef]

Soil Sci. (1)

D. A. Gillette, T. R. Walker, Soil Sci. 123, 97 (1977).
[CrossRef]

Other (1)

R. E. Engelhardt, G. W. Knebel, “Characteristics of the Dust Environment in the Vicinity of Military Activities,” Report AR-642 (AD665439), U.S. Army Mobility Equipment R&D Center, Ft. Belvoir, VA 22060 (Jan.1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

IR spectrum of a dust cloud of talc (magnesium silicate) particles small compared with the illumination wavelengths, thus producing a Rayleighlike optical scattering situation; virtually all extinction is due to absorption by the talc particles, i.e., αλα A λ , where α S λ ≈ 0.

Fig. 2
Fig. 2

Typical measured aerosol size distributions.11 The solid line represents a distribution measured under conditions of greatly reduced visibility (= 8 km), while the dashed line represents a size distribution of much lower total mass concentration measured under conditions of only slightly reduced visibility. The mode between 1 and 10 μm appears in both distributions, while the other modes are seen only in one distribution or the other (see text of Ref. 11 for details).

Fig. 3
Fig. 3

Spectra of selected soil samples.10 To find the value of α A λ for any spectrum or wavelength, proceed as follows. The bottom spectra (sample 3 on left-hand side of the figure and sample 47 on right-hand side) are drawn to correct scale with the base lines (labeled in wave numbers). The peak absorption values (0.16 m2/g and 0.47 m2/g, respectively) are shown to the right of each spectrum. Place a ruler vertically on either bottom spectrum and measure the distance from the base line to the highest absorption peak. This distance is a constant for all curves. Thus the reader can move from one spectrum to another, measure this constant distance down from the highest absorption peak for each curve, and construct a horizontal base line for each curve at that point. The peak value of α A λ shown to the right of each curve is then used to graduate the ordinate of each spectrum from its base line.

Fig. 4
Fig. 4

Cumulative particle size distributions measured for dust clouds of Georgia red clay, which were composed primarily of kaolinite (aluminum silicate), shown by upper curve labeled TOTAL, and natural aerosol before dust clouds were generated, shown by lower curve labeled BACKGROUND; both curves from field tests conducted near Columbus, Ga. Also see Figs. 57.

Fig. 5
Fig. 5

IR spectrum of a dust cloud of Georgia red clay composed primarily of kaolinite (aluminum silicate) from field tests conducted near Columbus, Ga. The particle size distribution is shown by the upper curve of Fig. 4. Also see Figs. 6 and 7.

Fig. 6
Fig. 6

Extinction of IR radiation in the 7–14-μm window region by a dust cloud of Georgia red clay; the arrows represent the time history of the cloud, which was in the IR transmissometer beam for ∼25 sec. Absorption by the kaolinite band peaking near 9.8 μm is plotted on the abscissa, and total signal (i.e., 100% extinction) is plotted on the ordinate. The particle size distribution is shown in Fig. 4 (upper curve); also see Figs. 5 and 7.

Fig. 7
Fig. 7

Time history of IR extinction in the 7–14-μm window region by a dust cloud of Georgia red clay; the top curves (with points indicated by circles) show percent signal transmitted (S), and the lower curve indicates the percent signal absorbed by the kaolinite band peaking near 9.8 μm (A), as functions of the time in seconds during which the cloud was in the IR beam. The cloud particle size distribution is shown by the upper curve of Fig. 4. Also see Figs. 5 and 6.

Tables (5)

Tables Icon

Table I Optical Constants of Several Atmospheric Aerosol Materials

Tables Icon

Table II Dust Content of Typical United States Soils17

Tables Icon

Table III Particle size distribution in soil below 74 μm17 (Ft. Hood and Yuma Proving Ground)

Tables Icon

Table IV Peak Positions of the IR Bands of the Common Dust Minerals10

Tables Icon

Table V Relative Concentrations of the Common Dust Minerals in Soil Samples10

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ln ( 1 / T λ ) = α λ CL ,
α λ = α A λ + α S λ .
α λ · ρ α A λ · ρ = k L λ · f ( m λ ) ,
k L λ = ( 4 π k λ ) / λ .

Metrics