Abstract

A schlieren system of the z type has been designed and used to characterize the chromatic variation of index of refraction gradients. Samples of gradient-index glass produced by Bausch & Lomb (Rochester, New York), Schott Optical (Mainz, West Germany), and University of Rochester (Rochester, New York) have been characterized.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hosch, J. P. Walters, Appl. Opt. 16, 473 (1977).
    [CrossRef] [PubMed]
  2. L. Foucault, Ann. Observ. Imp. Paris 5, 203 (1858).
  3. A. Toepler, Beobachtungen nach einer neuen optischen Methode (1864).
  4. D. W. Holder, R. J. North, Schlieren Methods (Her Majesty's Stationary Office, London, 1963), p. 1.
  5. H. A. Buchdahl, J. Opt. Soc. Am. 63, 46 (1953).
    [CrossRef]
  6. D. T. Moore, “Gradient Index Optics: Aspects of Design, Testing, Tolerancing, and Fabrication,” Ph.D. Thesis, U. Rochester (1974).
  7. National Science Foundation, Gradient Index Optical Glass Lenses, Annual Report July 1975–December 1976 (NSF, Washington, D.C., 1976).
  8. D. P. Ryan, U. Rochester; private communication.
  9. S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester (1979).

1977 (1)

1953 (1)

1864 (1)

A. Toepler, Beobachtungen nach einer neuen optischen Methode (1864).

1858 (1)

L. Foucault, Ann. Observ. Imp. Paris 5, 203 (1858).

Buchdahl, H. A.

Fantone, S. D.

S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester (1979).

Foucault, L.

L. Foucault, Ann. Observ. Imp. Paris 5, 203 (1858).

Holder, D. W.

D. W. Holder, R. J. North, Schlieren Methods (Her Majesty's Stationary Office, London, 1963), p. 1.

Hosch, J. W.

Moore, D. T.

D. T. Moore, “Gradient Index Optics: Aspects of Design, Testing, Tolerancing, and Fabrication,” Ph.D. Thesis, U. Rochester (1974).

North, R. J.

D. W. Holder, R. J. North, Schlieren Methods (Her Majesty's Stationary Office, London, 1963), p. 1.

Ryan, D. P.

D. P. Ryan, U. Rochester; private communication.

Toepler, A.

A. Toepler, Beobachtungen nach einer neuen optischen Methode (1864).

Walters, J. P.

Ann. Observ. Imp. Paris (1)

L. Foucault, Ann. Observ. Imp. Paris 5, 203 (1858).

Appl. Opt. (1)

Beobachtungen nach einer neuen optischen Methode (1)

A. Toepler, Beobachtungen nach einer neuen optischen Methode (1864).

J. Opt. Soc. Am. (1)

Other (5)

D. T. Moore, “Gradient Index Optics: Aspects of Design, Testing, Tolerancing, and Fabrication,” Ph.D. Thesis, U. Rochester (1974).

National Science Foundation, Gradient Index Optical Glass Lenses, Annual Report July 1975–December 1976 (NSF, Washington, D.C., 1976).

D. P. Ryan, U. Rochester; private communication.

S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester (1979).

D. W. Holder, R. J. North, Schlieren Methods (Her Majesty's Stationary Office, London, 1963), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic for the preparation of gradient-index sample. The original cylinder of glass that is diffused from the bottom is cored to make a lens blank. The remaining doughnut is cut into plane–parallel slabs for measurement.

Fig. 2
Fig. 2

Schematic of the gradient-index schlieren system.

Fig. 3
Fig. 3

Typical irradiance pattern at local plane with gradient-index sample containing a wedge.

Fig. 4
Fig. 4

Ray path in gradient-index slab. The index of refraction is given by n(y) = n0 + n1y + n2y2 + …, and the ray path is y(x) = A0 + A1x + A2x2 + ….

Fig. 5
Fig. 5

Schematic of unfolded schlieren system.

Fig. 6
Fig. 6

Maximum slope of index of refraction vs wavelength for BL44B (3A0015). Glass produced by Bausch & Lomb was made by exchanging silver ions into an alumina-silicate glass at a temperature of 575°C for 72 h.

Fig. 7
Fig. 7

Maximum slope of index of refraction vs wavelength for BL14 (2A9893). Glass (Bausch & Lomb) was made by ion exchange of silver ion into an alumina-silicate glass at a temperature of 500°C for 72 h. A postheat treatment of 72 h at 550°C was also performed.

Fig. 8
Fig. 8

Maximum slope of index of refraction vs wavelength for TR8. The host glass was KF3 into which lithium ions were diffused for 38 h at 581°C. The glass was manufactured at the University of Rochester.9

Fig. 9
Fig. 9

Maximum slope of index of refraction vs wavelength for TR6 manufactured by University of Rochester.9 The host glass was SF64, and the diffusant was lithium bromide. The time of diffusion was 38 h at 581°C

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n ( y ) = n 0 + n 1 y + n 2 y 2 + . . . ,
y ( x ) = A 0 + A 1 x + A 2 x 2 + . . . ,
n y ( 1 + y ̇ 2 ) + n y ¨ = 0 .
ϕ = d / f ,
n ϕ = n ϕ ,
ϕ = n ( A 0 ) y ( t ) .
y ( x ) = A 0 + A 1 x + A 2 x 2 + A 3 x 3 + A 4 x 4 ,
y ( x ) = A 0 + A 2 x 2 + A 4 x 4 .
y ( x ) = 2 A 2 x + 4 A 4 x 3 .
n ( A 0 ) y ( t ) = n ( A 0 ) t { 1 + 2 n ( A 0 ) + [ n ( A 0 ) ] 2 n ( A 0 ) t 2 12 n ( A 0 ) } .
d / f = n ( A 0 ) t .
n ( A 0 ) = d / ( ft ) .

Metrics