Abstract

The requirements and techniques for time- and space-resolved picosecond probing of laser-produced plasmas are reviewed. The design and limitations of a holographic microinterferometer are discussed, and optical pulse techniques are presented. This technique can provide significant data for understanding the absorption of energy within laser-produced plasmas. The primary requirements are to measure the electron densities in the 1020–1021-e/cc range, with density contour velocities of 106 to 107 cm/sec and spatial resolution of 1 μm or better. For these velocities one requires a probe pulse duration of 3–30 psec, an UV wavelength as short as feasible, and large numerical aperture optics corrected for spherical aberration. Interferograms of laser-produced plasmas obtained at 2660 Å with a combined resolution of 1 μm and 15 psec are presented.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
    [CrossRef]
  2. J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).
    [CrossRef]
  3. V. R. Costich, B. C. Johnson, Laser Focus 43 (Sep.1974).
  4. D. T. Attwood, B. C. Johnson, unpublished. The W-type apodizer used here was designed and built in 1973 but not documented before inclusion in this paper.
  5. J. D. Trolinger, “Laser Instrumentation for Flow Field Diagnostics,” National Technical Information Service, AD-779149 (1975), pp. 20–24.
  6. V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966); D. T. Attwood, E. S. Bliss, E. L. Pierce, L. W. Coleman, IEEE J. Quantum Electron 12, 203 (1976); E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargen, H. J. Weanor, IEEE J. Quantum Electron. QE12, 402 (1976); E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phy. Lett. 25, No. 8, 150 (1974).
    [CrossRef]
  7. D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
    [CrossRef]
  8. J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).
  9. W. F. Hogan, P. C. Magnante, J. Appl. Phys. 40, 219 (1969).
    [CrossRef]
  10. A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 21.
  11. David Anafi, Lasermetrics, Inc.; private communications.Yung S. Liu, Appl. Phys. Lett. 31, No. 3, 187 (1Aug.1977).
    [CrossRef]
  12. R. A. Phillips, J. Opt. Soc. Am. 56, 629 (1966).
    [CrossRef]
  13. John Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
    [CrossRef]
  14. F. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  15. D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
    [CrossRef]
  16. D. W. Sweeney, J. Opt. Soc. Am. 64, 559 (1974).
  17. D. W. Sweeney, D. T. Attwood, L. W. Coleman, Appl. Opt. 15, 1126 (1976).
    [CrossRef] [PubMed]

1978 (1)

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

1977 (1)

John Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

1976 (3)

D. W. Sweeney, D. T. Attwood, L. W. Coleman, Appl. Opt. 15, 1126 (1976).
[CrossRef] [PubMed]

J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).

J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).
[CrossRef]

1975 (2)

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
[CrossRef]

D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
[CrossRef]

1974 (2)

V. R. Costich, B. C. Johnson, Laser Focus 43 (Sep.1974).

D. W. Sweeney, J. Opt. Soc. Am. 64, 559 (1974).

1969 (1)

W. F. Hogan, P. C. Magnante, J. Appl. Phys. 40, 219 (1969).
[CrossRef]

1966 (2)

R. A. Phillips, J. Opt. Soc. Am. 56, 629 (1966).
[CrossRef]

V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966); D. T. Attwood, E. S. Bliss, E. L. Pierce, L. W. Coleman, IEEE J. Quantum Electron 12, 203 (1976); E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargen, H. J. Weanor, IEEE J. Quantum Electron. QE12, 402 (1976); E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phy. Lett. 25, No. 8, 150 (1974).
[CrossRef]

Anafi, D.

J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).

Anafi, David

David Anafi, Lasermetrics, Inc.; private communications.Yung S. Liu, Appl. Phys. Lett. 31, No. 3, 187 (1Aug.1977).
[CrossRef]

Attwood, D. T.

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

D. W. Sweeney, D. T. Attwood, L. W. Coleman, Appl. Opt. 15, 1126 (1976).
[CrossRef] [PubMed]

D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
[CrossRef]

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
[CrossRef]

D. T. Attwood, B. C. Johnson, unpublished. The W-type apodizer used here was designed and built in 1973 but not documented before inclusion in this paper.

Auerbach, J. M.

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

Bespalov, V. I.

V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966); D. T. Attwood, E. S. Bliss, E. L. Pierce, L. W. Coleman, IEEE J. Quantum Electron 12, 203 (1976); E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargen, H. J. Weanor, IEEE J. Quantum Electron. QE12, 402 (1976); E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phy. Lett. 25, No. 8, 150 (1974).
[CrossRef]

Coleman, L. W.

D. W. Sweeney, D. T. Attwood, L. W. Coleman, Appl. Opt. 15, 1126 (1976).
[CrossRef] [PubMed]

D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
[CrossRef]

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
[CrossRef]

Costich, V. R.

V. R. Costich, B. C. Johnson, Laser Focus 43 (Sep.1974).

Eckardt, R. C.

John Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Hogan, W. F.

W. F. Hogan, P. C. Magnante, J. Appl. Phys. 40, 219 (1969).
[CrossRef]

Holzrichter, J. F.

J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).
[CrossRef]

Jenkins, F.

F. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Johnson, B. C.

V. R. Costich, B. C. Johnson, Laser Focus 43 (Sep.1974).

D. T. Attwood, B. C. Johnson, unpublished. The W-type apodizer used here was designed and built in 1973 but not documented before inclusion in this paper.

Lee, P. H. Y.

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

Machewirth, J. P.

J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).

Magnante, P. C.

W. F. Hogan, P. C. Magnante, J. Appl. Phys. 40, 219 (1969).
[CrossRef]

Phillips, R. A.

Pierce, E. L.

D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
[CrossRef]

Reintjes, John

John Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Speck, D. R.

J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).
[CrossRef]

Sweeney, D. W.

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

D. W. Sweeney, D. T. Attwood, L. W. Coleman, Appl. Opt. 15, 1126 (1976).
[CrossRef] [PubMed]

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
[CrossRef]

D. W. Sweeney, J. Opt. Soc. Am. 64, 559 (1974).

Talanov, V. I.

V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966); D. T. Attwood, E. S. Bliss, E. L. Pierce, L. W. Coleman, IEEE J. Quantum Electron 12, 203 (1976); E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargen, H. J. Weanor, IEEE J. Quantum Electron. QE12, 402 (1976); E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phy. Lett. 25, No. 8, 150 (1974).
[CrossRef]

Trolinger, J. D.

J. D. Trolinger, “Laser Instrumentation for Flow Field Diagnostics,” National Technical Information Service, AD-779149 (1975), pp. 20–24.

Webb, R.

J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).

White, H.

F. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 21.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975); D. T. Attwood, in Proceedings, Twelfth International Congress on High Speed Photography, Toronto, Canada (1976). Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington 98225.
[CrossRef]

IEEE J. Quantum Electron. (1)

John Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

J. Appl. Phys. (2)

J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).
[CrossRef]

W. F. Hogan, P. C. Magnante, J. Appl. Phys. 40, 219 (1969).
[CrossRef]

J. Opt. Soc. Am. (2)

D. W. Sweeney, J. Opt. Soc. Am. 64, 559 (1974).

R. A. Phillips, J. Opt. Soc. Am. 56, 629 (1966).
[CrossRef]

JETP Lett. (1)

V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966); D. T. Attwood, E. S. Bliss, E. L. Pierce, L. W. Coleman, IEEE J. Quantum Electron 12, 203 (1976); E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargen, H. J. Weanor, IEEE J. Quantum Electron. QE12, 402 (1976); E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phy. Lett. 25, No. 8, 150 (1974).
[CrossRef]

Laser Focus (2)

V. R. Costich, B. C. Johnson, Laser Focus 43 (Sep.1974).

J. P. Machewirth, R. Webb, D. Anafi, Laser Focus 104 (May1976).

Opt. Commun. (1)

D. T. Attwood, E. L. Pierce, L. W. Coleman, Opt. Commun. 15, No. 1, (1975), pp. 10.
[CrossRef]

Phys. Rev. Lett. (1)

D. T. Attwood, D. W. Sweeney, J. M. Auerbach, P. H. Y. Lee, Phys. Rev. Lett. 40, 184 (1978).
[CrossRef]

Other (5)

F. Jenkins, H. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 21.

David Anafi, Lasermetrics, Inc.; private communications.Yung S. Liu, Appl. Phys. Lett. 31, No. 3, 187 (1Aug.1977).
[CrossRef]

D. T. Attwood, B. C. Johnson, unpublished. The W-type apodizer used here was designed and built in 1973 but not documented before inclusion in this paper.

J. D. Trolinger, “Laser Instrumentation for Flow Field Diagnostics,” National Technical Information Service, AD-779149 (1975), pp. 20–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Probe beam optical beam path and schematic diagram.

Fig. 2
Fig. 2

Characteristic radii values for a Gaussian profile.

Fig. 3
Fig. 3

Spatial filter.

Fig. 4
Fig. 4

W-type apodize aperture.

Fig. 5
Fig. 5

Beam profile attenuation curve using a W-type apodizer.

Fig. 6
Fig. 6

Super-Gaussian profile as obtained through absorption from a Gaussian profile.

Fig. 7
Fig. 7

Expanded Gaussian beam profile compared with super-Gaussian profile.

Fig. 8
Fig. 8

Pulse compression curve illustrating square law principle.

Fig. 9
Fig. 9

Frequency doubling crystal polarization diagram.

Fig. 10
Fig. 10

Schematic diagram of probe beam optical path within target chamber and reference beam.

Fig. 11
Fig. 11

Interferometer optical path.

Fig. 12
Fig. 12

Ultraviolet alignment photographs illustrating that the center of the beam is aligned with the cross hairs.

Fig. 13
Fig. 13

Ultraviolet interferometer photographs: (left) single shot showing target only; (Center) double shot showing uniformity of wall thickness; (Right) irradiated target showing fringes.

Fig. 14
Fig. 14

Irradiated target illustrating fringes with original target diameter.

Fig. 15
Fig. 15

Irridiated disk, paralyene target, illustrating fringes.

Fig. 16
Fig. 16

Illustration of the effect that incorrect focusing can give in correct number of fringes.

Tables (1)

Tables Icon

Table I Phase-Matching Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T r = a exp [ - ( r / r a ) 5 ] exp [ - ( r / r e ) 2 ,
M = r e , out r e , in = r a / 1.20 r e , in = 2.3.
d ( 1 / c 2 ) = 4 ( 1.25 ) f λ r ( 1 / e 2 ) ,
B = 2 Π γ λ 0 L I d l .
I = I 0 exp [ - ( r / r e ) 2 ] exp [ - ( 2 / t / τ ) 2 ] ,
I 0 = 2 ( Π ) 3 / 2 χ E τ r e 2 = 2.47 × 10 9 W / cm 2 ,
κ 1 - 1 2 n e n c , UV ,
δ - D n e 2 λ n c , UV .

Metrics