Abstract

A comparison has been made between proposed configurations for Nd-glass laser systems for fusion. Detailed theoretical modeling of pulse propagation has been carried out using a linearized model with the variables taken to be time, axial coordinate, and one transverse coordinate. A non-temporally varying, three-spatial dimension model was also used to correct the linearized two-spatial dimension calculations. A 105 J system using 200 slab amplifiers and 20 spatial filters and having a 10−4 rad divergence appears feasible.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.
  2. D. R. Speck et al., “The Performance of Argus as a Laser Fusion Facility,” Lawrence Livermore Laboratory Preprint UCRL-79816 (Sept.1977).
  3. J. A. Glaze, R. O. Godwin, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1978).
  4. Yu. V. Afanasjev et al., Radiotekhnika Moscow 17, 193 (1978).
  5. V. V. Alexandrov et al., Nucl. Fusion Suppl. 15, 113 (1975).
  6. I. N. Burdonsky et al., Appl. Opt. 15, 1450 (1976).
    [CrossRef] [PubMed]
  7. A. V. Ponomarev, V. M. Chernjak, “Thermooptical Distortions in Laser Rectangular Cross Section Active Element” (Institute of Atomic Energy, Moscow, 1979), Preprint N 3079.
  8. I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
    [CrossRef]
  9. L. A. Bolshov et al., Institute of Applied Mathematics, U.S.S.R. Academy of Sciences (1979), Preprint N 109.

1978 (2)

Yu. V. Afanasjev et al., Radiotekhnika Moscow 17, 193 (1978).

I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

1976 (1)

1975 (1)

V. V. Alexandrov et al., Nucl. Fusion Suppl. 15, 113 (1975).

Afanasjev, Yu. V.

Yu. V. Afanasjev et al., Radiotekhnika Moscow 17, 193 (1978).

Alexandrov, V. V.

V. V. Alexandrov et al., Nucl. Fusion Suppl. 15, 113 (1975).

Bangerter, R. O.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

Bliss, E. S.

I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

Bolshov, L. A.

L. A. Bolshov et al., Institute of Applied Mathematics, U.S.S.R. Academy of Sciences (1979), Preprint N 109.

Burdonsky, I. N.

Chernjak, V. M.

A. V. Ponomarev, V. M. Chernjak, “Thermooptical Distortions in Laser Rectangular Cross Section Active Element” (Institute of Atomic Energy, Moscow, 1979), Preprint N 3079.

Fleck, I. A.

I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

Glaze, J. A.

J. A. Glaze, R. O. Godwin, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1978).

Godwin, R. O.

J. A. Glaze, R. O. Godwin, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1978).

Lindle, J. D.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

Mead, W. C.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

Morris, J. R.

I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

Nuckolls, J. H.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

Pan, Y. L.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

Ponomarev, A. V.

A. V. Ponomarev, V. M. Chernjak, “Thermooptical Distortions in Laser Rectangular Cross Section Active Element” (Institute of Atomic Energy, Moscow, 1979), Preprint N 3079.

Speck, D. R.

D. R. Speck et al., “The Performance of Argus as a Laser Fusion Facility,” Lawrence Livermore Laboratory Preprint UCRL-79816 (Sept.1977).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

I. A. Fleck, J. R. Morris, E. S. Bliss, IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

Nucl. Fusion Suppl. (1)

V. V. Alexandrov et al., Nucl. Fusion Suppl. 15, 113 (1975).

Radiotekhnika Moscow (1)

Yu. V. Afanasjev et al., Radiotekhnika Moscow 17, 193 (1978).

Other (5)

L. A. Bolshov et al., Institute of Applied Mathematics, U.S.S.R. Academy of Sciences (1979), Preprint N 109.

A. V. Ponomarev, V. M. Chernjak, “Thermooptical Distortions in Laser Rectangular Cross Section Active Element” (Institute of Atomic Energy, Moscow, 1979), Preprint N 3079.

J. H. Nuckolls, R. O. Bangerter, J. D. Lindle, W. C. Mead, Y. L. Pan, in Proceedings, Eleventh European Conference on Laser Interaction with Matter, 19–23 Sept. 1977, Preprint UCRL-79373.

D. R. Speck et al., “The Performance of Argus as a Laser Fusion Facility,” Lawrence Livermore Laboratory Preprint UCRL-79816 (Sept.1977).

J. A. Glaze, R. O. Godwin, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical schemes of multichannel laser systems: (a) parallel scheme, and (b) branching scheme.

Fig. 2
Fig. 2

Amplifier with a rectangular cross-section (40 × 240-mm2) active element (slab).

Fig. 3
Fig. 3

Wave front picture at the output end of the slab amplifier.

Fig. 4
Fig. 4

Input intensity distribution δ = 5%. (a) Fourier spectrum, intensity normalized to one at k = 0. (b) Near-field intensity distribution. The intensity scale unit is 0.26 GW/cm2 for phosphate glass (left) and 0.2 GW/cm2 for silicate glass (right).

Fig. 5
Fig. 5

Spectrum and intensity distribution at the second amplifier output. The intensity scale unit is 0.26 GW/cm2 for phosphate glass.

Fig. 6
Fig. 6

Spectrum and intensity distribution at the second amplifier output. The intensity scale unit is 0.26 GW/cm2 for silicate glass.

Fig. 7
Fig. 7

Intensity distribution δ = 10% along the y axis at the output surface of the phosphate glass slab.

Fig. 8
Fig. 8

Equal intensity contours (δ = 10%) at the output surface of the phosphate glass slab (0.5 × 0.25 cm2 near the center).

Fig. 9
Fig. 9

Output intensity distribution with absorbing particles situated on the first slab surface in a two-cascade amplification system (2-D simulation).

Fig. 10
Fig. 10

Intensity distribution along they axis in the section crossing the absorbing particle. The same conditions as in Fig. 9 but with 3-D simulation.

Tables (1)

Tables Icon

Table I Nd3+: Glass Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 i k ( E z + 1 v E t ) + Δ E + k 2 n 2 n 0 E 2 E - i g k E = 0 ,
g t = - I E s g ,
E ( x , o , t ) = E 0 ( x , t ) { 1 + δ ( 3 16 k 0 ) 1 / 2 - k 0 k 0 α k exp [ i ( 2 π k d x + φ k ) ] } ,
δ = 2 I [ ( Δ I - Δ I ) 2 ] 1 / 2 ,

Metrics