Abstract

Double-pulse in-line Fraunhofer holography has been applied to the development of an aerosol spectrometer. The device, which has been applied to asbestos (crocidolite) dust, yields estimates of position, velocity, size, shape, and tumbling rate.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Levine, Ed., “Asbestos: An Information Resource,” DHEW Publ. (NIH)79-1681 (U.S. GPO, Washington, D.C., May1978).
  2. C. Boose, Staub 22, No. 3, 109 (1962).
  3. W. Stober, H. Flacksbart, Environ. Sci. Technol. 3, 1280 (1969).
    [CrossRef]
  4. G. P. Parrent, B. J. Thompson, Opt. Acta 11, No. 3, 183 (1964).
    [CrossRef]
  5. E. A. Boettner, B. J. Thompson, Opt. Eng. 12, No. 2, 56 (1973).
    [CrossRef]
  6. N. A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964).
  7. R. Gans, Sitzungsber. Math. Phys. Kl. Akad. Wiss. Muenchen 41, 249 (1911).
  8. H. Horvath, Staub 34, No. 7, 197 (1974).
  9. W. Walkenhorst, Staub 36, No. 4, 149 (1976).

1976 (1)

W. Walkenhorst, Staub 36, No. 4, 149 (1976).

1974 (1)

H. Horvath, Staub 34, No. 7, 197 (1974).

1973 (1)

E. A. Boettner, B. J. Thompson, Opt. Eng. 12, No. 2, 56 (1973).
[CrossRef]

1969 (1)

W. Stober, H. Flacksbart, Environ. Sci. Technol. 3, 1280 (1969).
[CrossRef]

1964 (1)

G. P. Parrent, B. J. Thompson, Opt. Acta 11, No. 3, 183 (1964).
[CrossRef]

1962 (1)

C. Boose, Staub 22, No. 3, 109 (1962).

1911 (1)

R. Gans, Sitzungsber. Math. Phys. Kl. Akad. Wiss. Muenchen 41, 249 (1911).

Boettner, E. A.

E. A. Boettner, B. J. Thompson, Opt. Eng. 12, No. 2, 56 (1973).
[CrossRef]

Boose, C.

C. Boose, Staub 22, No. 3, 109 (1962).

Flacksbart, H.

W. Stober, H. Flacksbart, Environ. Sci. Technol. 3, 1280 (1969).
[CrossRef]

Fuchs, N. A.

N. A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964).

Gans, R.

R. Gans, Sitzungsber. Math. Phys. Kl. Akad. Wiss. Muenchen 41, 249 (1911).

Horvath, H.

H. Horvath, Staub 34, No. 7, 197 (1974).

Parrent, G. P.

G. P. Parrent, B. J. Thompson, Opt. Acta 11, No. 3, 183 (1964).
[CrossRef]

Stober, W.

W. Stober, H. Flacksbart, Environ. Sci. Technol. 3, 1280 (1969).
[CrossRef]

Thompson, B. J.

E. A. Boettner, B. J. Thompson, Opt. Eng. 12, No. 2, 56 (1973).
[CrossRef]

G. P. Parrent, B. J. Thompson, Opt. Acta 11, No. 3, 183 (1964).
[CrossRef]

Walkenhorst, W.

W. Walkenhorst, Staub 36, No. 4, 149 (1976).

Environ. Sci. Technol. (1)

W. Stober, H. Flacksbart, Environ. Sci. Technol. 3, 1280 (1969).
[CrossRef]

Opt. Acta (1)

G. P. Parrent, B. J. Thompson, Opt. Acta 11, No. 3, 183 (1964).
[CrossRef]

Opt. Eng. (1)

E. A. Boettner, B. J. Thompson, Opt. Eng. 12, No. 2, 56 (1973).
[CrossRef]

Sitzungsber. Math. Phys. Kl. Akad. Wiss. Muenchen (1)

R. Gans, Sitzungsber. Math. Phys. Kl. Akad. Wiss. Muenchen 41, 249 (1911).

Staub (3)

H. Horvath, Staub 34, No. 7, 197 (1974).

W. Walkenhorst, Staub 36, No. 4, 149 (1976).

C. Boose, Staub 22, No. 3, 109 (1962).

Other (2)

R. J. Levine, Ed., “Asbestos: An Information Resource,” DHEW Publ. (NIH)79-1681 (U.S. GPO, Washington, D.C., May1978).

N. A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Shape correction factors: K||, K and K ¯.

Fig. 2
Fig. 2

Dust-settling-column geometry.

Fig. 3
Fig. 3

Hologram construction and image reconstruction geometries.

Fig. 4
Fig. 4

Summary on image depth, image and reconstruction magnification, and far-field diameter dependences on sample depth.

Fig. 5
Fig. 5

Two-Pulse holograph of falling asbestos dust (T = 10 sec).

Fig. 6
Fig. 6

Reconstruction of falling asbestos fiber.

Tables (2)

Tables Icon

Table I Illustrative Data and the Averages and Standard Deviations of Data for Twenty-Four Particles

Tables Icon

Table II Summary of Shape Factor Estimators

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

π / 6 D 3 ( ρ - ρ f l ) g = 3 π η D V .
π / 6 D e 3 ( ρ - ρ f l ) g = 3 π η D e V K .
D s = ( 18 η V / ρ g ) 1 / 2 .
D s = D e / K 1 / 2 .
D a e = ( 18 η V / ρ 0 g ) 1 / 2 .
D a e = ( ρ / ρ 0 ) 1 / 2 D e / K 1 / 2 .
K = ( ρ / ρ 0 ) ( D e / D a e ) 2 ,
( D e / D a e ) 2 / K = ρ 0 / ρ
K ( β , θ ) = [ cos 2 θ K ( β ) + sin 2 θ K ( β ) ] - 1 .
1 24 ( D e / D a e ) 2 = 0.80 ± 0.33.
K 24 * 2.5 ± 1.0.
1 18 ( D e / D a e ) 2 = 0.77 ± 0.34 ,             K 18 * = 2.4 ± 1.0.
1 18 ( D e / D a e ) 2 / K ¯ = 0.46 ± 0.13 ,
K meas / K theory ¯ 1.4 ± 0.4.
1 18 ( D e / D a e ) 2 / K ( β , ρ ) = 0.52 ± 0.13.

Metrics