Abstract

An airborne laser fluorosensor is described that was designed to detect and identify targets by means of the characteristic fluorescence emission spectrum. The first field trials of the sensor over marine oil and dye spills are reported. A correlation technique has been developed that, when applied to the data collected during these field trials, clearly differentiated among dye, the two crude oils, and the general fluorescence background of ocean water.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Fantasia, T. M. Hard, H. G. Ingaro, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” DOT Transportation Systems Center, U.S. Coast Guard Report TSC-USCG-71-7 (1971).
  2. R. Horvarth, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).
  3. J. F. Fantasia, H. C. Ingrao, in Proceedings, Ninth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1711.
  4. R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).
  5. R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).
  6. D. M. Rayner, A. G. Szabo, Appl. Opt. 17, 1624 (1978).
    [CrossRef] [PubMed]
  7. M. Bristow, Remote Sensing Environ. 7, 105 (1978).
    [CrossRef]
  8. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, Appl. Opt. 17, 3798 (1978).
    [CrossRef] [PubMed]
  9. D. M. Rayner, M. Lee, A. G. Szabo, Appl. Opt. 17, 2730 (1978).
    [CrossRef] [PubMed]
  10. W. L. Hays, R. L. Winkler, Statistics—Probability, Inference and Decision (Holt, Rinehart, and Winston, New York, 1971), pp. 600–616.

1978

1975

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Bristow, M.

M. Bristow, Remote Sensing Environ. 7, 105 (1978).
[CrossRef]

Davies, A. R.

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Fantasia, J. F.

J. F. Fantasia, H. C. Ingrao, in Proceedings, Ninth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1711.

J. F. Fantasia, T. M. Hard, H. G. Ingaro, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” DOT Transportation Systems Center, U.S. Coast Guard Report TSC-USCG-71-7 (1971).

Garleck, J.

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

Gross, H. G.

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Hard, T. M.

J. F. Fantasia, T. M. Hard, H. G. Ingaro, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” DOT Transportation Systems Center, U.S. Coast Guard Report TSC-USCG-71-7 (1971).

Hays, W. L.

W. L. Hays, R. L. Winkler, Statistics—Probability, Inference and Decision (Holt, Rinehart, and Winston, New York, 1971), pp. 600–616.

Horvarth, R.

R. Horvarth, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

Houston, W. R.

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

Ingaro, H. G.

J. F. Fantasia, T. M. Hard, H. G. Ingaro, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” DOT Transportation Systems Center, U.S. Coast Guard Report TSC-USCG-71-7 (1971).

Ingrao, H. C.

J. F. Fantasia, H. C. Ingrao, in Proceedings, Ninth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1711.

Kakui, Y.

Kashiwagi, H.

Kruus, J.

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Lee, M.

Measures, R. M.

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

Morgan, W. L.

R. Horvarth, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

Nanjo, M.

O’Neil, R. A.

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Rayner, D. M.

Sato, T.

Stephenson, D. G.

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

Stewart, S. R.

R. Horvarth, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

Suzuki, Y.

Szabo, A. G.

Winkler, R. L.

W. L. Hays, R. L. Winkler, Statistics—Probability, Inference and Decision (Holt, Rinehart, and Winston, New York, 1971), pp. 600–616.

Am. Soc. Test. Mater. Spec. Tech. Publ.

R. A. O’Neil, A. R. Davies, H. G. Gross, J. Kruus, Am. Soc. Test. Mater. Spec. Tech. Publ. 573, 424 (1975).

Appl. Opt.

Can. J. Remote Sensing

R. M. Measures, J. Garleck, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1, 95 (1975).

Remote Sensing Environ.

M. Bristow, Remote Sensing Environ. 7, 105 (1978).
[CrossRef]

Other

W. L. Hays, R. L. Winkler, Statistics—Probability, Inference and Decision (Holt, Rinehart, and Winston, New York, 1971), pp. 600–616.

J. F. Fantasia, T. M. Hard, H. G. Ingaro, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” DOT Transportation Systems Center, U.S. Coast Guard Report TSC-USCG-71-7 (1971).

R. Horvarth, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

J. F. Fantasia, H. C. Ingrao, in Proceedings, Ninth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1711.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical emission spectra of oils from the three main oil groups: light refined products, crude oils, and heavy residual oils.

Fig. 2
Fig. 2

Block diagram of the laser fluorosensor showing the major electrooptical components. In addition the entire fluorosensor system requires a laser support pallet (consisting of a power supply, a nitrogen supply, and a vacuum pump) and a microprocessor-based data acquisition system that includes a real-time display and a computer-compatible tape transport.

Fig. 3
Fig. 3

Laboratory front surface fluorescence emission spectra of Merban crude oil (solid line), La Rosa crude oil (dash–dot line), and rhodamine WT dye (1% in water) (dashed line) used in the flight trials of the fluorosensor. The excitation wavelength was 337 nm. The spectra obtained in the field were identical in shape and relative intensity to those obtained in the laboratory.

Fig. 4
Fig. 4

Typical fluorosensor data gathered over the 1 Nov. 1978 rhodamine WT dye spill (flight line 6). These data have been corrected for altitude, gain, and laser power.

Fig. 5
Fig. 5

Typical fluorosensor data gathered over the 2 Nov. 1978 Merban crude oil spill (flight line 12). These data have been corrected for altitude, gain, and laser power.

Fig. 6
Fig. 6

Typical fluorosensor data gathered over the 3 Nov. 1978 La Rosa crude oil spill (flight line 6). These data have been corrected for altitude, gain, and laser power.

Fig. 7
Fig. 7

Correlation of in-flight (flight line 17) fluorosensor data gathered over the 2 November 1978 Merban crude oil spill with the spectral signature of Merban crude oil, La Rosa crude oil, and rhodamine WT dye.

Tables (2)

Tables Icon

Table I Laser Transmitter Characteristics

Tables Icon

Table II Fluorosensor Receiver Characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ = N i X i Y i - i X i i Y i [ N i X i 2 - ( i X i ) 2 ] 1 / 2 [ N i Y i 2 - ( i Y i ) 2 ] 1 / 2 ,

Metrics