Abstract

Faraday rotation is obtained in highly birefringent single-mode fibers by using alternating or periodically spaced regions of magnetic field. This approach has potential applications in isolators, circulators, combination tuning and unidirectional elements, and for studying fiber birefringence.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Harms, A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976); H. Aulich, N. Douklias, H. Harms, A. Papp, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), paper WD4.
    [CrossRef] [PubMed]
  2. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  3. S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1974).
    [CrossRef]
  4. R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
    [CrossRef]
  5. R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
    [CrossRef]
  6. P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
    [CrossRef]
  7. H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
    [CrossRef]
  8. W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
    [CrossRef]
  9. A. Papp, H. Harms, Appl. Opt. 14, 2406 (1975).
    [CrossRef] [PubMed]
  10. D. E. Gray, Ed., AIP Handbook (McGraw-Hill, New York, 1963), Sec. 6, p. 185.
  11. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
    [CrossRef] [PubMed]

1979 (1)

1978 (2)

A. M. Smith, Appl. Opt. 17, 52 (1978).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

1976 (2)

1975 (1)

1974 (2)

P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
[CrossRef]

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1974).
[CrossRef]

1972 (1)

R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

1969 (1)

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Blank, S. L.

P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
[CrossRef]

Chen, F. S.

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Divino, M. D.

Harms, H.

Ippen, E. P.

R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Kempter, K.

Kogelnik, H.

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

Papp, A.

Pleibel, W.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1974).
[CrossRef]

Schinke, D. P.

P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
[CrossRef]

Schmidt, R. V.

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

Smith, A. M.

Stolen, R. H.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Tabor, W. J.

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Tien, P. K.

P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
[CrossRef]

Tynes, A. R.

R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Ulrich, R.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1974).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1974).
[CrossRef]

R. H. Stolen, E. P. Ippen, A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

J. Appl. Phys. (2)

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

P. K. Tien, D. P. Schinke, S. L. Blank, J. Appl. Phys. 45, 3059 (1974).
[CrossRef]

Other (1)

D. E. Gray, Ed., AIP Handbook (McGraw-Hill, New York, 1963), Sec. 6, p. 185.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic effect of birefringence on Faraday rotation: (a) relative polarization in a birefringent fiber over one beat wavelength L p ; (b) coupling due to uniform magnetic field H.

Fig. 2
Fig. 2

Schematic diagram of experiment using N identical equally spaced field regions on a birefringent fiber.

Fig. 3
Fig. 3

Experimental arrangement.

Fig. 4
Fig. 4

Effect of varying magnet gap (l2) polarization conversion.

Fig. 5
Fig. 5

Magnetic field dependence of polarization conversion.

Tables (1)

Tables Icon

Table I Beat Wavelengths Measured by Two Methods a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L p = λ / δ n .
P y P i n = sin 2 [ ( N L p 2 ) ( 2 π ) V H ] .
Δ λ / λ = ( L p / 2 ) ( N l 1 ) ,
P y P i n = ( 2 V H L p π ) 2 sin 2 ( π l 2 L p ) cos 2 ( π l 1 L p ) ,

Metrics