Abstract

Optical propagation losses and coupling losses in Ti-diffused strip waveguides, fabricated in y-plate and z-plate LiNbO3, have been examined at 1.15-μm wavelength. Propagation losses for y-plate and z-plate waveguides are ~0.5 dB/cm. Coupling losses in the y-plate and z-plate waveguides for a single-mode fiber are 2.5 and 1 dB, respectively. This difference is due to the large surface diffusion anisotropy; it is expressed by near-field pattern overlap calculations.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
    [CrossRef]
  2. T. Kimura, M. Saruwatari, J. Yamada, S. Uehara, T. Miyashita, Appl. Opt. 17, 2420 (1978).
    [CrossRef] [PubMed]
  3. O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).
  4. J. Noda, N. Uchida, M. Minakata, S. Saito, J. Opt. Soc. Am. 68, 1690 (1978).
    [CrossRef]
  5. M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
    [CrossRef]
  6. G. B. Hocker, W. K. Burns, IEEE J. Quantum Electron. QE-11, 270 (1975).
    [CrossRef]
  7. J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).
  8. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  9. J. Noda, M. Fukuma, Y. Ito, J. Appl. Phys., to be published.
  10. J. Noda, O. Mikami, M. Minakata, M. Fukuma, Appl. Opt. 17, 2092 (1978).
    [CrossRef] [PubMed]

1978 (6)

M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
[CrossRef]

O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

J. Noda, O. Mikami, M. Minakata, M. Fukuma, Appl. Opt. 17, 2092 (1978).
[CrossRef] [PubMed]

T. Kimura, M. Saruwatari, J. Yamada, S. Uehara, T. Miyashita, Appl. Opt. 17, 2420 (1978).
[CrossRef] [PubMed]

J. Noda, N. Uchida, M. Minakata, S. Saito, J. Opt. Soc. Am. 68, 1690 (1978).
[CrossRef]

1975 (1)

G. B. Hocker, W. K. Burns, IEEE J. Quantum Electron. QE-11, 270 (1975).
[CrossRef]

1969 (2)

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Burns, W. K.

G. B. Hocker, W. K. Burns, IEEE J. Quantum Electron. QE-11, 270 (1975).
[CrossRef]

Fukuma, M.

J. Noda, O. Mikami, M. Minakata, M. Fukuma, Appl. Opt. 17, 2092 (1978).
[CrossRef] [PubMed]

M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
[CrossRef]

O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).

J. Noda, M. Fukuma, Y. Ito, J. Appl. Phys., to be published.

Goell, J. E.

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Hocker, G. B.

G. B. Hocker, W. K. Burns, IEEE J. Quantum Electron. QE-11, 270 (1975).
[CrossRef]

Ito, Y.

J. Noda, M. Fukuma, Y. Ito, J. Appl. Phys., to be published.

Iwasaki, H.

M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
[CrossRef]

Kimura, T.

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Mikami, O.

J. Noda, O. Mikami, M. Minakata, M. Fukuma, Appl. Opt. 17, 2092 (1978).
[CrossRef] [PubMed]

O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).

Minakata, M.

Miyashita, T.

Miyazawa, S.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Noda, J.

O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).

M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
[CrossRef]

J. Noda, N. Uchida, M. Minakata, S. Saito, J. Opt. Soc. Am. 68, 1690 (1978).
[CrossRef]

J. Noda, O. Mikami, M. Minakata, M. Fukuma, Appl. Opt. 17, 2092 (1978).
[CrossRef] [PubMed]

J. Noda, M. Fukuma, Y. Ito, J. Appl. Phys., to be published.

Saito, S.

J. Noda, N. Uchida, M. Minakata, S. Saito, J. Opt. Soc. Am. 68, 1690 (1978).
[CrossRef]

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Saruwatari, M.

Shibata, M.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Uchida, N.

Uehara, S.

Yamada, J.

Appl. Opt. (2)

Bell Syst. Tech. J. (2)

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

IEEE J. Quantum Electron. (1)

G. B. Hocker, W. K. Burns, IEEE J. Quantum Electron. QE-11, 270 (1975).
[CrossRef]

J. Appl. Phys. (2)

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

M. Fukuma, J. Noda, H. Iwasaki, J. Appl. Phys. 49, 3693 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Trans. Inst. Electron. Commun. Eng. (1)

O. Mikami, J. Noda, M. Fukuma, Trans. Inst. Electron. Commun. Eng. E61, 144 (1978).

Other (1)

J. Noda, M. Fukuma, Y. Ito, J. Appl. Phys., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Ti-ion distributions along they direction for 8-μm wide strip waveguide fabricated in z-plate LiNbO3.

Fig. 2
Fig. 2

Diffusion constants D for bulk diffusion B and surface diffusion S of Ti ion in the y and the z plates. Diff fusion time is 5 h, Ti metal thickness is 500 Å.

Fig. 3
Fig. 3

Calculated index change profiles in y- and z-plate waveguides. Ti initial strip is 10 μm wide and 500 Å thick; it is diffused for 5 h.

Fig. 4
Fig. 4

E 0 q y mode cutoff relations between strip width 2w and index change Δn. Diffusion conditions are at 1050°C for 5 h.

Fig. 5
Fig. 5

Diffusion temperature dependence of the E 00 y mode near-field patterns supported in the y-plate and z-plate waveguides (a) perpendicular to the surface, and (b) parallel to the surface and that in the fiber. Ti metal strip is 8 μm wide and 500 Å thick; diffusion time is 5 h.

Fig. 6
Fig. 6

Diffusion temperature dependences of optical insertion losses for (a) the E 00 y mode and (b) the E 00 z mode in the Ti-diffused z-plate waveguides with length x of 3.3 and 12.5 mm. Reflection losses at both waveguide end faces are excluded.

Fig. 7
Fig. 7

Coupling losses calculated by the field overlap integral for the E 00 y mode shown in Fig. 5: □ = coupling loss due to mismatch perpendicular to the surface; ○ = coupling loss due to mismatch parallel to the surface; ● = total coupling loss: (a) between y-plate waveguides and fiber, (b) between z-plate waveguides and fiber.

Fig. 8
Fig. 8

Coupling losses and propagation losses for (a) the E 00 y mode in y-plate waveguides, (b) the E 00 y mode in z-plate waveguides, and (c) the E 00 z mode in z-plate waveguides. Dotted lines show the coupling loss calculated from near-field pattern overlap integral.

Fig. 9
Fig. 9

Insertion ratio I/I0 changes for the E 00 y mode in the z-plate waveguide produced by axial displacement along the y and z directions. Ti strip is 6 μm wide and 500 Å thick; it is diffused at 1000°C for 5 h.

Fig. 10
Fig. 10

Diffusion temperature dependence of coupling tolerance for the E 00 y mode in z-plate waveguides for axial displacement. Ti strip is 8 μm wide and 500 Å thick; it is diffused for 4 h.

Fig. 11
Fig. 11

Insertion ratio I/I0 changes for the E 00 y mode in the z-plate waveguide produced by the gap between waveguide and fiber. Ti strip is 8 μm wide and 500 Å thick; it is diffused at 1050°C for 5 h. Curves (A) and (B) are achieved at the input waveguide end and at the output waveguide end, respectively.

Tables (3)

Tables Icon

Table I Diffusion Constant D0 and Activation Energy for Bulk Diffusion B and Surface Diffusion S of Ti ion in y-Plate and z-Plate LiNbO3.

Tables Icon

Table II Lateral Mode Numbers of E y and E z Modes Supported in the z-Plate Waveguides; Ti Strip is 500 Å Thick, Diffused for 5 h in Air

Tables Icon

Table III Appropriate Diffusion Conditions for Low-Loss Waveguides and Losses at 1.15-μm Wavelength

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = ½ C 0 exp ( - z 2 / 4 D z t ) { erf [ w - y 2 ( D y t ) 1 / 2 ] + erf [ w + y 2 ( D y t ) 1 / 2 ] } ,
k 0 0 z t [ n 2 ( z ) - n eff 2 ] 1 / 2 d z = ( p + ¼ ) π + tan - 1 { η [ n z 2 - 1 n 2 ( 0 ) - n eff 2 ] 1 / 2 } p = 0 , 1 , 2 , ,
n ( z ) = n s + Δ n exp [ - ( z / d z ) 2 ] , η = [ n 2 ( 0 ) for E z modes 1 for E y modes ,
k 0 - y t y t [ n 2 ( y ) - n y 2 ] 1 / 2 d y = ( q + ½ ) π             q = 0 , 1 , 2 , ,
n ( y ) = n s + ( n eff - n s ) [ erf ( w - y d y ) + erf ( w + y d y ) ] / 2 erf ( w d y ) ,

Metrics