Abstract

The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-μm wavelength, the absorption-to-extinction fraction is 0.01 ± 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45–0.00133i and a median diameter in the 0.15–0.65-μm range. For acetylene smoke the absorbed fraction was 0.85 ± 0.05.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Terhune, J. E. Anderson, Opt. Lett. 1, 70 (1977).
    [CrossRef] [PubMed]
  2. M. Kerker, M. J. Sculley, W. A. Farone, A. J. Kassman, Appl. Opt. 17, 3030 (1978).
    [CrossRef] [PubMed]
  3. G. Mie, Speziell Kolloidaler Metallosiingen Ann. Phys. 25, 337 (1908).
  4. F. R. Faxvog, D. M. Roessler, Appl. Opt. 17, 2612 (1978).
    [PubMed]
  5. G. P. Morie, M. S. Baggett, Beitr. Tabakforsch. 9, 72 (1977).
  6. D. M. Roessler, F. R. Faxvog, “Optoacoustic measurement of optical absorption in acetylene smoke,” to be published in J. Opt. Soc. Am.69, December (1979).
    [CrossRef]

1978 (2)

1977 (2)

G. P. Morie, M. S. Baggett, Beitr. Tabakforsch. 9, 72 (1977).

R. W. Terhune, J. E. Anderson, Opt. Lett. 1, 70 (1977).
[CrossRef] [PubMed]

1908 (1)

G. Mie, Speziell Kolloidaler Metallosiingen Ann. Phys. 25, 337 (1908).

Anderson, J. E.

Baggett, M. S.

G. P. Morie, M. S. Baggett, Beitr. Tabakforsch. 9, 72 (1977).

Farone, W. A.

Faxvog, F. R.

F. R. Faxvog, D. M. Roessler, Appl. Opt. 17, 2612 (1978).
[PubMed]

D. M. Roessler, F. R. Faxvog, “Optoacoustic measurement of optical absorption in acetylene smoke,” to be published in J. Opt. Soc. Am.69, December (1979).
[CrossRef]

Kassman, A. J.

Kerker, M.

Mie, G.

G. Mie, Speziell Kolloidaler Metallosiingen Ann. Phys. 25, 337 (1908).

Morie, G. P.

G. P. Morie, M. S. Baggett, Beitr. Tabakforsch. 9, 72 (1977).

Roessler, D. M.

F. R. Faxvog, D. M. Roessler, Appl. Opt. 17, 2612 (1978).
[PubMed]

D. M. Roessler, F. R. Faxvog, “Optoacoustic measurement of optical absorption in acetylene smoke,” to be published in J. Opt. Soc. Am.69, December (1979).
[CrossRef]

Sculley, M. J.

Terhune, R. W.

Appl. Opt. (2)

Beitr. Tabakforsch. (1)

G. P. Morie, M. S. Baggett, Beitr. Tabakforsch. 9, 72 (1977).

Opt. Lett. (1)

Speziell Kolloidaler Metallosiingen Ann. Phys. (1)

G. Mie, Speziell Kolloidaler Metallosiingen Ann. Phys. 25, 337 (1908).

Other (1)

D. M. Roessler, F. R. Faxvog, “Optoacoustic measurement of optical absorption in acetylene smoke,” to be published in J. Opt. Soc. Am.69, December (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mie theory cross sections per unit mass for scattering and absorption by cigarette smoke particles of diameter D and refractive index m − 1.45–0.00133i at wavelength λ = 0.5145 μm. The particle density is assumed to be 1 g·cm−3.

Fig. 2
Fig. 2

Theoretical fraction of light absorbed by cigarette smoke as a function of particle size distribution. The curve for σ = 0 corresponds to particles of uniform diameter.

Fig. 3
Fig. 3

Photoacoustic signal and optical transmission of cigarette smoke aerosol as a function of residence time in the cell. Initial concentrations of smoke drawn off the cigarette tip (curve 1) were usually lower than those for filtered smoke (curve 2).

Fig. 4
Fig. 4

Fractional absorption of cigarette smoke as a function of residence time in the cell. The continuous curves are eye guides only, and the structure may be an artifact of the data scatter.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C S = λ 2 2 π n = 1 ( 2 n + 1 ) ( a n 2 + b n 2 ) ,
C E = λ 2 2 π n = 1 ( 2 n + 1 ) [ Re ( a n + b n ) ] ,
n ( D ) = N σ ( 2 π ) 1 / 2 exp [ - ( log 10 D - log 10 D 1 ) 2 2 σ 2 ] ,
log 10 D 3 = log 10 D 1 + 3 σ 2 / ( log 10 e ) .
b E = - R E ( D ) m ( D ) d ( log 10 D ) ,
I = I 0 exp ( - b E L ) .
S = R ( b A / b E ) [ 1 - exp ( - b E L ) ] W 0 / L ,
b A / b E = S L R ( 1 - I / I 0 ) W 0 .

Metrics