Abstract

Expressions are developed for the radiation pressure on infinite dielectric cylinders caused by an oblique incidence as a function of the size parameter α = 2πa/λ. It is shown that for nonabsorbing cylinders the radiation pressure is always perpendicular to the axis of the cylinder and thus not along the direction of the incident radiation except for the case of normal incidence. This result applies also for other small nonspherical particles. Consequently, the radiation pressure on a randomly oriented nonspinning group of small nonspherical particles causes the particles to spread away from the direction of propagation of the incident radiation. It is suggested that this conclusion should be taken into account when discussing the effect of the radiation pressure on small particles in space, as compared with other forces such as the dynamic pressure on the solar wind.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Shifrin, I. L. Zalmanovitch, Opt. Spectrosc. USSR 17, 57 (1964).
  2. W. M. Irvine, J. Opt. Soc. Am. 55, 16 (1965).
    [CrossRef]
  3. M. Kerker, The Scattering of Light (Academic, New York, 1969).
  4. See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
    [CrossRef]
  5. G. Thilo, Ann. Phys. 62, 531 (1920).
    [CrossRef]
  6. M. Kerker, W. A. Farone, R. T. Jacobsen, J. Opt. Soc. Am. 56, 487 (1966).
    [CrossRef]

1969 (1)

See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
[CrossRef]

1966 (1)

1965 (1)

1964 (1)

K. S. Shifrin, I. L. Zalmanovitch, Opt. Spectrosc. USSR 17, 57 (1964).

1920 (1)

G. Thilo, Ann. Phys. 62, 531 (1920).
[CrossRef]

Cohen, A.

See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
[CrossRef]

Farone, W. A.

Irvine, W. M.

Jacobsen, R. T.

Kerker, M.

M. Kerker, W. A. Farone, R. T. Jacobsen, J. Opt. Soc. Am. 56, 487 (1966).
[CrossRef]

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Low, W.

See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
[CrossRef]

Neumann, J.

See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
[CrossRef]

Shifrin, K. S.

K. S. Shifrin, I. L. Zalmanovitch, Opt. Spectrosc. USSR 17, 57 (1964).

Thilo, G.

G. Thilo, Ann. Phys. 62, 531 (1920).
[CrossRef]

Zalmanovitch, I. L.

K. S. Shifrin, I. L. Zalmanovitch, Opt. Spectrosc. USSR 17, 57 (1964).

Ann. Phys. (1)

G. Thilo, Ann. Phys. 62, 531 (1920).
[CrossRef]

J. Appl. Meteorol. (1)

See, for example, A. Cohen, J. Neumann, W. Low, J. Appl. Meteorol. 8, 952 (1969).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Spectrosc. USSR (1)

K. S. Shifrin, I. L. Zalmanovitch, Opt. Spectrosc. USSR 17, 57 (1964).

Other (1)

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table I 0.01 Ⓒ α Ⓒ 1 a

Tables Icon

Table II 1 ≤ α ≤ 100 a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

A . F . = I ( θ ) cos θ d θ d ϕ sin θ I ( θ ) d θ d ϕ sin θ ,
P = α E i sin Φ , P = α E i cos Φ ,
I 1 ( θ ) = 2 I 0 π r k | n = - b n exp ( i n θ ) | 2 ,
I 2 ( θ ) = 2 I 0 π r k | n = - a n exp ( i n θ ) | 2 .
C ext = C scat = const × r × 2 0 π [ I 1 ( θ ) + I 2 ( θ ) ] d θ I T .
I axis / c = I T sin ϕ / c R . P . I ,
I normal / c I T cos ϕ / c = R . P . II .
1 c [ I 1 ( θ ) + I 2 ( θ ) ] sin ϕ ,
C I = 1 c × const × r × 2 0 π [ I 1 ( θ ) + I 2 ( θ ) ] sin ϕ d θ = sin ϕ I T c = R . P . I .
C II = cos ϕ c × const × r × 2 0 π [ I 1 ( θ ) + I 2 ( θ ) ] cos θ d θ .
I 1 ( θ ) + I 2 ( θ ) = { I 1 ( 0 ) + I 2 ( 0 ) θ = 0 ° , 0 θ 0 ° ,
α = 0.01 ; 0.1 ( Δ α = 0.1 ) 1 ( Δ α = 1 ) 100 ,
ϕ = 0 ° ( Δ ϕ = 10 ° ) 80 °
0 π cos ( k θ ) cos ( l θ ) cos θ d θ [ 0 π sin ( k θ ) sin ( l θ ) cos θ d θ = ] = { 0 ; l - k 1 , π / 4 ; l - k = 1 ; l + k 1 , π / 2 ; l + k = 1 ,
C I I = 2 cos ϕ A c [ 2 n = 1 Re ( b n * b n - 1 ) + 2 n = 2 Re ( a n * a n - 1 ) ] ,
R . R . P . = c I T ( R . P . II - C II ) .
I T c = R . P . II cos ϕ = 2 A c [ b 0 2 + 2 n = 1 ( b n 2 + a n 2 ) ] ,
R . R . P . = cos ϕ [ 1 - 2 n = 1 Re ( b n * b n - 1 ) + 2 n = 2 Re ( a n * a n - 1 ) b 0 2 + 2 n = 1 ( a n 2 + b n 2 ) ] .
A . F . of cylinders = I ( θ ) cos θ d θ I ( θ ) d θ

Metrics