Abstract

OH molecules in the burnt gases of a methane–air flame are excited to individual rotational levels of the v′ = 0 level of the. A2+ state using a tunable pulsed laser. Some of the laser-excited molecules undergo upward collisional energy transfer to v′ = 1 before radiating. A measurement of the ratio of the populations in these two vibrational levels, together with an estimate of the relative rates of vibrational transfer and quenching and the invocation of detailed balancing, furnishes the temperature of the flame. The method should be suitable for the single-pulse simultaneous measurement of the temperature and the concentration of OH, a reactive intermediate species.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, Ed., Laser Probes for Combustion Chemistry, ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), to be published.
    [CrossRef]
  2. J. W. Daily, in Ref. 1; C. Chan, Ph.D. Thesis, Dept. of Mechanical Engineering, U. California, Berkeley (1979).
  3. R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
    [CrossRef]
  4. G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
    [CrossRef]
  5. I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer23, in press (1980).
    [CrossRef]
  6. G. P. Smith, D. R. Crosley, L. W. Davis, Eastern Section Combustion Institute Meeting, Atlanta, November 1979;G. P. Smith, D. R. Crosley, Appl Opt., to be published.
  7. R. K. Lengel, D. R. Crosley, Chem. Phys. Lett. 32, 261 (1975); J. Chem. Phys. 68, 5309 (1978).
    [CrossRef]
  8. K. R. German, J. Chem. Phys. 64, 4065 (1976).
    [CrossRef]
  9. H. P. Hoomayers, C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 7, 495 (1967).
    [CrossRef]
  10. M. J. Cottereau, D. Stepowski in Ref. 1.

1977 (1)

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

1976 (1)

K. R. German, J. Chem. Phys. 64, 4065 (1976).
[CrossRef]

1975 (1)

R. K. Lengel, D. R. Crosley, Chem. Phys. Lett. 32, 261 (1975); J. Chem. Phys. 68, 5309 (1978).
[CrossRef]

1967 (1)

H. P. Hoomayers, C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 7, 495 (1967).
[CrossRef]

1962 (1)

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Alkemade, C. T. J.

H. P. Hoomayers, C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 7, 495 (1967).
[CrossRef]

Chidsey, I. L.

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer23, in press (1980).
[CrossRef]

Cottereau, M. J.

M. J. Cottereau, D. Stepowski in Ref. 1.

Crosley, D. R.

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

R. K. Lengel, D. R. Crosley, Chem. Phys. Lett. 32, 261 (1975); J. Chem. Phys. 68, 5309 (1978).
[CrossRef]

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer23, in press (1980).
[CrossRef]

G. P. Smith, D. R. Crosley, L. W. Davis, Eastern Section Combustion Institute Meeting, Atlanta, November 1979;G. P. Smith, D. R. Crosley, Appl Opt., to be published.

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Daily, J. W.

J. W. Daily, in Ref. 1; C. Chan, Ph.D. Thesis, Dept. of Mechanical Engineering, U. California, Berkeley (1979).

Davis, L. W.

G. P. Smith, D. R. Crosley, L. W. Davis, Eastern Section Combustion Institute Meeting, Atlanta, November 1979;G. P. Smith, D. R. Crosley, Appl Opt., to be published.

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

German, K. R.

K. R. German, J. Chem. Phys. 64, 4065 (1976).
[CrossRef]

Hoomayers, H. P.

H. P. Hoomayers, C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 7, 495 (1967).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

R. K. Lengel, D. R. Crosley, Chem. Phys. Lett. 32, 261 (1975); J. Chem. Phys. 68, 5309 (1978).
[CrossRef]

Smith, G. P.

G. P. Smith, D. R. Crosley, L. W. Davis, Eastern Section Combustion Institute Meeting, Atlanta, November 1979;G. P. Smith, D. R. Crosley, Appl Opt., to be published.

Stepowski, D.

M. J. Cottereau, D. Stepowski in Ref. 1.

Chem. Phys. Lett. (1)

R. K. Lengel, D. R. Crosley, Chem. Phys. Lett. 32, 261 (1975); J. Chem. Phys. 68, 5309 (1978).
[CrossRef]

J. Chem. Phys. (2)

K. R. German, J. Chem. Phys. 64, 4065 (1976).
[CrossRef]

R. K. Lengel, D. R. Crosley, J. Chem. Phys. 67, 2085 (1977).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

G. H. Dieke, H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

H. P. Hoomayers, C. T. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 7, 495 (1967).
[CrossRef]

Other (5)

M. J. Cottereau, D. Stepowski in Ref. 1.

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer23, in press (1980).
[CrossRef]

G. P. Smith, D. R. Crosley, L. W. Davis, Eastern Section Combustion Institute Meeting, Atlanta, November 1979;G. P. Smith, D. R. Crosley, Appl Opt., to be published.

D. R. Crosley, Ed., Laser Probes for Combustion Chemistry, ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), to be published.
[CrossRef]

J. W. Daily, in Ref. 1; C. Chan, Ph.D. Thesis, Dept. of Mechanical Engineering, U. California, Berkeley (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy levels and transitions involved in the experiment. Rotational levels are not explicitly indicated.

Fig. 2
Fig. 2

Fluorescence scans obtained upon pumping the F1(4) level of v′ = 0. The abcissa is the wavelength in angstroms, and the vertical scale is the same for both scans. Top: emission from v′ = 0 in two rotationally resolved P branches. Bottom: emission from v′ = 1.

Fig. 3
Fig. 3

Schematic definition of the rates used in the analysis. Radiative removal from v′ = 1 is not included.

Fig. 4
Fig. 4

Plot of the ratio N1/N0 resulting from upward vibrational transfer in OH vs temperature. This indicates the dynamic range needed to measure temperatures pertinent to flames.

Tables (1)

Tables Icon

Table I Results for Population Ratios

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ V exp ( - Δ E / k T ) N 0 = ( V + A + Q ) N 1 .
N 1 N 0 = exp ( - Δ E / k T ) 1 + Q / V
T = - Δ E k { ln [ ( 1 + Q / V ) N 1 N 0 ] } - 1 .

Metrics