Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).
  2. A. E. Siegman, IEEE J. Quantum Electron. QE-12, 35 (1976).
    [CrossRef]
  3. A. Hardy, S. C. Sheng, A. E. Siegman, manuscript in preparation.

1980 (1)

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).

1976 (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-12, 35 (1976).
[CrossRef]

Bélanger, P. A.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).

Hardy, A.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).

A. Hardy, S. C. Sheng, A. E. Siegman, manuscript in preparation.

Sheng, S. C.

A. Hardy, S. C. Sheng, A. E. Siegman, manuscript in preparation.

Siegman, A. E.

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).

A. E. Siegman, IEEE J. Quantum Electron. QE-12, 35 (1976).
[CrossRef]

A. Hardy, S. C. Sheng, A. E. Siegman, manuscript in preparation.

Appl. Opt. (1)

P. A. Bélanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 0000 (1980).

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-12, 35 (1976).
[CrossRef]

Other (1)

A. Hardy, S. C. Sheng, A. E. Siegman, manuscript in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Typical PCM resonator and (b) basic analytical model for discussion of the lowest-order Gaussian transverse mode of an optical cavity with a phase-conjugate mirror. The Hermite-Gaussian wave E(x) is measured at a reference plane immediately in front of the PCM with the q parameter pointing outward relative to the PCM.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( A + B q ) ( A + B q * ) = 1.
E 1 ( x ) = α 1 m V 1 m H m ( 2 x V 1 ) exp ( - j k x 2 2 q 1 ) ,
α 2 m = α 1 m ( A + B / q 1 ) m + 1 / 2 ,
q 2 = A q 1 + B C q 1 + D ,
V 2 2 = V 1 2 ( A + B / q 1 ) 2 + j 4 B k ( A + B / q 1 ) .
E 2 * ( x ) = γ E 1 ( x ) ,
q 1 = - q 2 * = q ,
γ = α 2 * m α 1 m = α 1 * m α 1 m 1 ( A + B / q ) * ( m + 1 / 2 ) ,
V 1 = V 2 * = V .
( V 2 ) * = V 2 ( A + B / q ) 2 + j 4 B k ( A + B / q ) .
V 2 ( A + B / q ) - V * 2 ( A + B / q * ) = - j 4 B k .
V 0 2 A 0 sin 2 θ V sin ( θ A - θ B ) = 0 ,
V 0 2 sin 2 θ V [ A 0 cos ( θ A - θ B ) + B 0 R ] = - λ π B 0 × ( 1 - V 0 2 W 2 cos 2 θ V ) ,
1 q = 1 R - j λ π W 2 .
V = W ,

Metrics