Abstract

Tuning characteristics of power, intramode beat frequency, and polarization of 633-nm internal mirror lasers filled with natural Ne or 20Ne are studied. It is found that the tuning curve of a polarization signal is S-shaped for the natural Ne laser, whereas that of the intramode beat frequency is S-shaped for the 20Ne laser. The characteristic parameters of the tuning curve of the intramode beat frequency are determined. The axial modes of a 3He–20Ne laser are collapsed into one by a transverse magnetic field and frequency stabilized by cooling the laser tube with a fan to keep the intramode beat constant. Frequency fluctuation of 3 × 10−10 is obtained by the Allan variance analysis for the integration period range of 0.1–100 sec. Absolute accuracy and interinstrumental reproducibility of stabilized wavelengths can be expected for a 3He–20Ne transverse Zeeman laser stabilized at the central frequency of the intramode beat.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Morris, J. B. Ferguson, J. S. Warniak, Appl. Opt. 14, 2808 (1975).
    [CrossRef] [PubMed]
  2. N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).
  3. N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).
  4. J. B. Ferguson, R. H. Morris, Appl. Opt. 17, 2924 (1978).
    [CrossRef] [PubMed]
  5. M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).
  6. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  7. N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).
  8. H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).
  9. W. R. C. Rowley, D. C. Wilson, Appl. Opt. 11, 475 (1972).
    [CrossRef] [PubMed]
  10. R. A. Settles, C. V. Heer, Appl. Phys. Lett. 12, 350 (1968).
    [CrossRef]
  11. N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).
  12. N. Umeda, H. Takasaki, in Proceedings, Fourth International Conference on Ellipsometry, 1979, to be published.
  13. R. Balhorn, H. Kunzmann, F. Lebowsky, Appl. Opt. 11, 742 (1972).
    [CrossRef] [PubMed]
  14. S. K. Gordon, S. F. Jacobs, Appl. Opt. 13, 231 (1974).
    [CrossRef] [PubMed]
  15. U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).
  16. J. Magyar, J. Phys. E 11, 647 (1978).
    [CrossRef]
  17. T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).
  18. K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
    [CrossRef]
  19. N. Ito, K. Tanaka, Metrologia 14, 47 (1978).
    [CrossRef]

1979 (2)

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

1978 (7)

J. Magyar, J. Phys. E 11, 647 (1978).
[CrossRef]

N. Ito, K. Tanaka, Metrologia 14, 47 (1978).
[CrossRef]

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).

J. B. Ferguson, R. H. Morris, Appl. Opt. 17, 2924 (1978).
[CrossRef] [PubMed]

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

1977 (1)

K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
[CrossRef]

1975 (1)

1974 (1)

1972 (2)

1971 (1)

H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).

1968 (1)

R. A. Settles, C. V. Heer, Appl. Phys. Lett. 12, 350 (1968).
[CrossRef]

1966 (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Abramson, N.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Balhorn, R.

Colding, B.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

de Lang, H.

H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).

Ferguson, J. B.

Gordon, S. K.

Heer, C. V.

R. A. Settles, C. V. Heer, Appl. Phys. Lett. 12, 350 (1968).
[CrossRef]

Hirano, I.

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

Ishida, Y.

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

Ito, N.

N. Ito, K. Tanaka, Metrologia 14, 47 (1978).
[CrossRef]

Jacobs, S. F.

Katsura, T.

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

Kunzmann, H.

Kurosawa, T.

K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
[CrossRef]

Lebowsky, F.

Magyar, J.

J. Magyar, J. Phys. E 11, 647 (1978).
[CrossRef]

Morris, R. H.

Murry, M.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

Polder, D.

H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).

Rowley, W. R. C.

Sakurai, T.

K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
[CrossRef]

Sandstrom, U.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

Settles, R. A.

R. A. Settles, C. V. Heer, Appl. Phys. Lett. 12, 350 (1968).
[CrossRef]

Sjolin, U.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

Takasaki, H.

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

N. Umeda, H. Takasaki, in Proceedings, Fourth International Conference on Ellipsometry, 1979, to be published.

Tanaka, K.

N. Ito, K. Tanaka, Metrologia 14, 47 (1978).
[CrossRef]

K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
[CrossRef]

Togawa, M.

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

Tsukiji, M.

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).

Umeda, N.

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

N. Umeda, H. Takasaki, in Proceedings, Fourth International Conference on Ellipsometry, 1979, to be published.

van Haeringen, W.

H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).

Warniak, J. S.

Wilson, D. C.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. A. Settles, C. V. Heer, Appl. Phys. Lett. 12, 350 (1968).
[CrossRef]

Bull. Res. Inst. Electron. Shizuoka Univ. (2)

M. Tsukiji, Y. Ishida, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 13, 39 (1978) (in Japanese).

T. Katsura, M. Tsukiji, N. Umeda, H. Takasaki, Bull. Res. Inst. Electron. Shizuoka Univ. 14, 7 (1979) (in Japanese).

J. Phys. E (1)

J. Magyar, J. Phys. E 11, 647 (1978).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Tanaka, T. Sakurai, T. Kurosawa, Jpn. J. Appl. Phys. 16, 2071 (1977).
[CrossRef]

Kogaku (1)

N. Umeda, M. Tsukiji, T. Katsura, H. Takasaki, Kogaku 8, 279 (1979) (in Japanese).

Metrologia (1)

N. Ito, K. Tanaka, Metrologia 14, 47 (1978).
[CrossRef]

Oyo Butsuri (3)

N. Umeda, I. Hirano, M. Togawa, H. Takasaki, Oyo Butsuri 47, 42 (1978) (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 432 (1978), (in Japanese).

N. Umeda, M. Tsukiji, H. Takasaki, Oyo Butsuri 47, 1053 (1978) (in Japanese).

Philips Tech. Rev. (1)

H. de Lang, D. Polder, W. van Haeringen, Philips Tech. Rev. 32, 190 (1971).

Proc. IEEE (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Other (2)

N. Umeda, H. Takasaki, in Proceedings, Fourth International Conference on Ellipsometry, 1979, to be published.

U. Sandstrom, N. Abramson, U. Sjolin, M. Murry, B. Colding, U.S. Patent3,662,279 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic drawing of the experimental arrangement for observation of power profile, intramode beat, and polarization of light emitted by an STZL. BC: bridge circuit; SO: storage oscilloscope.

Fig. 2
Fig. 2

Tuning characteristics of power (a) without magnetic field, (b) intramode beat frequency, and (c) polarization of an internal-mirror laser filled with natural Ne.

Fig. 3
Fig. 3

Tuning characteristics of an internal-mirror laser filled with 20Ne.

Fig. 4
Fig. 4

Tuning characteristics of intramode beat frequency of six 3He–20Ne internal-mirror lasers at 0° and 90° settings.

Fig. 5
Fig. 5

Schematic drawing of the experimental arrangement to identify the fast or slow birefringence axis of a laser tube.

Fig. 6
Fig. 6

Spectrum of the optical beat of a local oscillator and an STZL. The main spectrum is the beat of the horizontal components of STZL 2 and 1, and the satellite spectrum is the beat of the horizontal component of the STZL 2 (local oscillator) and the vertical component of the STZL 1.

Fig. 7
Fig. 7

Tuning curve of the intramode beat frequency of 3He–20Ne lasers rearranged from Fig. 4, considering plus or minus the beat frequency. The beat frequency is plus when the optical frequency of the π component is higher than that of the σ component.

Fig. 8
Fig. 8

Tuning curve of the intramode beat frequency for the 0° and 90° settings of a laser and characteristic parameters of the curve.

Fig. 9
Fig. 9

Waveform distortion of the intramode beat of an STZL stabilized at the central (left) and the minimum frequencies (right) of the intramode beat.

Fig. 10
Fig. 10

Higher harmonic contents of the intramode beat as a function of cavity tuning.

Fig. 11
Fig. 11

Interlocking of the two beam components of an STZL by rotation of a laser tube in the transverse magnetic field. The three test tubes are different in their central beat frequency(or the degree of birefringence). Some of the tuning curves are rearranged to show the S-shape as a whole when the original shape has two peaks. The rearrangement is made taking into account the relative relation of the optical frequencies of the two light components.

Fig. 12
Fig. 12

Record of the intramode beat frequency (upper curves) and polarization signal (lower curves) of a 3He–20Ne laser: (a) initial free running; (b) from the start of resistance heating of the laser tube; (c) bidirectional change of the tube length after the warm-up is nearly completed.

Fig. 13
Fig. 13

Thermal expansion of a laser tube during the initial free running (a), and the additional length change due to three types of regulation techniques: (b) heater regulation; (c) discharge-current regulation; and (d) fan regulation.

Fig. 14
Fig. 14

View of an STZL and its spectrum.

Fig. 15
Fig. 15

Square root of the Allan variance of optical frequency fluctuation of an STZL estimated from the fluctuation of the intramode beat frequency.

Fig. 16
Fig. 16

Square root of the Allan variance of (a) the optical beat of two identical STZLs and (b) that of the beat of a STZL and an iodine-stabilized He–Ne laser.

Fig. 17
Fig. 17

Power profiles of (a) two 3He–20Ne lasers, (b) a 3He–natural Ne laser, and (c) the spectrum of a 3He–20Ne STZL stabilized at the central frequency of the intramode beat.

Tables (1)

Tables Icon

Table I Characteristic Parameters of the Tuning Curve of the Intramode Beat Frequency of 3He–20Ne Lasers Made by Two Different Production Units of Six Lasers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = q / 2 = q c / 2 ν .
d ν / ν = - d L / L .
Δ ° = - 360 ° L d ν / λ ν .
Δ ν : Δ f b = 1.91 × 10 3 : 1 ,

Metrics