Abstract

The principles of measuring currents in high-voltage lines by magnetooptical means are described. Particular attention is payed to using an optical fiber both as a transmission line and a measuring sensor. The influence of birefringence on the measuring signal is discussed.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Mueller, Elektroanzeiger 20, 24 (1973).
  2. L. Mouton, A. Stalewski, P. Bullo, Electro. 59, 91 (1978).
  3. Bestimmung ueber Messwandler (VDE Verlag, Berlin, 1970), Teil 2/12.70.
  4. M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
    [CrossRef]
  5. S. L. Nilsson, “ERRI R&D in Protective Relay Systems for Power System Applications,” paper presented at the Western Protective Relay Conference, Sacramento, California, 16–18 October 1978.
  6. J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).
  7. A. A. Jaeckling, M. Lietz, Appl. Opt. 11, 617 (1972).
    [CrossRef]
  8. A. J. Rogers, Proc. IEEE 20, 261 (1973).
  9. G. A. Massey, D. C. Erickson, R. A. Kadlec, Appl. Opt. 14, 2712 (1975).
    [CrossRef] [PubMed]
  10. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  11. Mueller, Pouillet, Lehrbuch der Physick II (Vieweg, Braunschweig, 1932), pp. 2119–2182.
  12. H. Harms, A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976).
    [CrossRef] [PubMed]
  13. H. Harms, E. Feldtkeller, Rev. Sci. Instrum. 44, 742 (1973).
    [CrossRef]
  14. A. Papp, H. Harms, Appl. Opt. 14, 2406 (1975).
    [CrossRef] [PubMed]
  15. H. Schneider, H. Harms, A. Papp, H. A. Aulich, Appl. Opt. 17, 3035 (1978).
    [CrossRef] [PubMed]
  16. For a more extensive explanation, see Part 2 of this paper, Appl. Opt. 19, 3735 (1980).
    [PubMed]
  17. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  18. R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948).
    [CrossRef]
  19. W. A. Tabor, F. S Chen, J. Appl. Phys. 40, 2760 (1969).
    [CrossRef]
  20. A. Papp, H. Harms, J. Magnetism Magn. Mat. 2, 287 (1976).
    [CrossRef]

1980 (1)

1978 (3)

1976 (3)

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

A. Papp, H. Harms, J. Magnetism Magn. Mat. 2, 287 (1976).
[CrossRef]

H. Harms, A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976).
[CrossRef] [PubMed]

1975 (2)

1973 (3)

A. J. Rogers, Proc. IEEE 20, 261 (1973).

H. Harms, E. Feldtkeller, Rev. Sci. Instrum. 44, 742 (1973).
[CrossRef]

W. Mueller, Elektroanzeiger 20, 24 (1973).

1972 (2)

J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).

A. A. Jaeckling, M. Lietz, Appl. Opt. 11, 617 (1972).
[CrossRef]

1969 (1)

W. A. Tabor, F. S Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

1948 (1)

1941 (1)

Aulich, H. A.

Bullo, P.

L. Mouton, A. Stalewski, P. Bullo, Electro. 59, 91 (1978).

Chen, F. S

W. A. Tabor, F. S Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Defechereux, J.

J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).

Dobrowolski, J.

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

Erickson, D. C.

Feldtkeller, E.

H. Harms, E. Feldtkeller, Rev. Sci. Instrum. 44, 742 (1973).
[CrossRef]

Harms, H.

Jaeckling, A. A.

Jones, R. C.

Kadlec, R. A.

Kempter, K.

Kirschvink, M.

J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).

Lietz, M.

Massey, G. A.

Mouton, L.

L. Mouton, A. Stalewski, P. Bullo, Electro. 59, 91 (1978).

Mueller,

Mueller, Pouillet, Lehrbuch der Physick II (Vieweg, Braunschweig, 1932), pp. 2119–2182.

Mueller, W.

W. Mueller, Elektroanzeiger 20, 24 (1973).

Nilsson, S. L.

S. L. Nilsson, “ERRI R&D in Protective Relay Systems for Power System Applications,” paper presented at the Western Protective Relay Conference, Sacramento, California, 16–18 October 1978.

Papp, A.

Petry, H.

J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).

Pouillet,

Mueller, Pouillet, Lehrbuch der Physick II (Vieweg, Braunschweig, 1932), pp. 2119–2182.

Rogers, A. J.

A. J. Rogers, Proc. IEEE 20, 261 (1973).

Rzewuski, M. N.

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

Schneider, H.

Smith, A. M.

Stalewski, A.

L. Mouton, A. Stalewski, P. Bullo, Electro. 59, 91 (1978).

Stuchly, S. S.

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

Tabor, W. A.

W. A. Tabor, F. S Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Tarnawecky, M. Z.

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

Yunik, M.

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

Appl. Opt. (7)

Electro. (1)

L. Mouton, A. Stalewski, P. Bullo, Electro. 59, 91 (1978).

Elektroanzeiger (1)

W. Mueller, Elektroanzeiger 20, 24 (1973).

Elektrotech. Z. (1)

J. Defechereux, M. Kirschvink, H. Petry, Elektrotech. Z. 24, 322 (1972).

IEEE Trans. Instrum. Meas. (1)

M. N. Rzewuski, S. S. Stuchly, M. Z. Tarnawecky, J. Dobrowolski, M. Yunik, IEEE Trans. Instrum. Meas. IM-25, 256 (1976).
[CrossRef]

J. Appl. Phys. (1)

W. A. Tabor, F. S Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

J. Magnetism Magn. Mat. (1)

A. Papp, H. Harms, J. Magnetism Magn. Mat. 2, 287 (1976).
[CrossRef]

J. Opt. Soc. Am. (2)

Proc. IEEE (1)

A. J. Rogers, Proc. IEEE 20, 261 (1973).

Rev. Sci. Instrum. (1)

H. Harms, E. Feldtkeller, Rev. Sci. Instrum. 44, 742 (1973).
[CrossRef]

Other (3)

Mueller, Pouillet, Lehrbuch der Physick II (Vieweg, Braunschweig, 1932), pp. 2119–2182.

S. L. Nilsson, “ERRI R&D in Protective Relay Systems for Power System Applications,” paper presented at the Western Protective Relay Conference, Sacramento, California, 16–18 October 1978.

Bestimmung ueber Messwandler (VDE Verlag, Berlin, 1970), Teil 2/12.70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the conventional inductive (a) and the unconventional current transformer (b): 1, sensor; 2, transmission path; 3, indicating instrument.

Fig. 2
Fig. 2

Scheme of magnetooptical current transformer with an optical fiber for light guidance and current metering: 1, light source; 2, polarizer; 3, optical fiber; 4, current conductor; 5, analyzer; 6, detector.

Fig. 3
Fig. 3

Schematic representation of the measuring method to eliminate the intensity-dependence of the Faraday signal. The plane of polarization of the incident light 6 (transmitting plane of polarizer in Fig. 2) includes, with the transmitting planes of polarization 4 and 5 of the Wollaston prism 1, an angle of 45° in each case. Component beams (amplitudes E1,2, intensities J1,2 prop. E 1,2 2) polarized normal to each other are intercepted by two photodetectors 2. The photocurrents are processed in an analog electronic circuit 3.

Fig. 4
Fig. 4

Deviation of the signal of SL in Eq. (6) from the proportionality to the Faraday rotation. Parameter a of the curves is the coefficient of the second term of the expanded power series in Eq. (6).

Fig. 5
Fig. 5

Degree of polarization P at the end of an optical fiber ~2 m in length as a function of the orientation Φ of the plane of polarization of the incident light beam.

Fig. 6
Fig. 6

Linearly polarized light (polarization vector E) is split in birefringent optical fiber into two wave components polarized normal to each other that propagate at two different velocities. The resulting phase offset usually causes the light emerging from the output end of the fiber to be elliptically polarized.

Fig. 7
Fig. 7

Ellipse of polarization at the output end of the optical fiber in the case of both birefringence and Faraday rotation: 1, plane of polarization of incident light beam; 2,3, transmitting planes of Wollaston prism; E1 and E2, amplitudes of the two component beams.

Fig. 8
Fig. 8

Dependence of signal Sb on the phase shift δ caused by the birefringence. Measurement obtained on a coil (twenty turns) wound from a single-mode optical fiber with a fused silica core is also indicated. In the important case of an optical fiber with a fused silica core the deviation from the drawn curve in the case of measured currents 0 ≤ I ≤ 1000 Å does not exceed the thickness of the line. Ordinate is normalized to the measurement signal S without birefringence.

Fig. 9
Fig. 9

Deviation Δ of the rotation measurement signal Sb from the proportionality to the primary current. The plane sensor coil is wound from a single-mode optical fiber with a fused silica core (twenty turns, total phase shift δ = 140°).

Tables (3)

Tables Icon

Table I Principal Specifications to be Met by an Unconventional Current Transformer (CT)a

Tables Icon

Table II Excerpt from VDE 0414 Giving Error Specifications for Current Transformers3

Tables Icon

Table III Characteristic Data for Faraday Rotationa in Various Materialsb

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

φ = V l H l · d l .
φ = V H · d l = V · I · N ,
J = J 0 / 2 · ( 1 + sin 2 φ )
J 1 = J 0 2 ( 1 + sin 2 φ ) , J 2 = J 0 2 ( 1 sin 2 φ ) ,
S = C ( J 1 J 2 J 1 + J 2 ) = C sin 2 φ ,
S L = S + a ( S 3 C 2 ) = C ( sin 2 φ + a · sin 3 2 φ ) ,
P = J max J min J max + J min .
S b = C [ P ( I , n , δ ) ] sin 2 φ ( I , n , δ ) .
S b = C sin [ 2 · φ 1 + ( δ 2 φ ) 2 ] 1 + ( δ 2 φ ) 2 ,
S b C ( sin δ δ ) 2 φ .

Metrics