Abstract

An experimental setup for digital 3-D image processing from hologram reconstructions is described. The real image as obtained upon reconstruction of the hologram with its conjugated reference wave is scanned by a movable image dissector camera without imaging optics and serves as analog 3-D picture input storage to the computer. This scheme has been developed to analyze automatically fast moving bubble fields in liquids recorded by high speed holographic techniques. A computer code has been written combining standard methods like gradient filtering from the field of image processing with specially developed algorithms for speckle noise suppression to locate and count the bubbles in the image volume and to determine their morphological data.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Thompson, J. Phys. E 7, 781 (1974).
    [CrossRef]
  2. W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).
  3. K. J. Ebeling, W. Lauterborn, Opt. Commun. 21, 67 (1977).
    [CrossRef]
  4. W. Lauterborn, K. J. Ebeling, Appl. Phys. Lett. 31, 663 (1977).
    [CrossRef]
  5. K. J. Ebeling, W. Lauterborn, Appl. Opt. 17, 2071 (1978).
    [CrossRef] [PubMed]
  6. F. Bader, Ph.D. Thesis, U Göttingen (1973).
  7. W. Lauterborn, K. J. Ebeling, Proc. Soc. Photo-Opt. Instrum. Eng. 97, 96 (1977).
  8. K. Hinsch, F. Bader, W. Lauterborn, “The Dynamics of Cavitation Bubble Fields Studies by Double-Pulse Holography,” in Finite Amplitude Wave Effects in Fluids, L. Bjørnø, Ed. (IPC Science and Technology Press, Guilford, U.K., 1974), pp. 240–244.
  9. B. J. Thompson, J. H. Ward, W. R. Zinky, Appl. Opt. 6, 519 (1967).
    [CrossRef] [PubMed]
  10. R. Bexon, C. D. Bishop, J. Gibbs, “Holographic Size Determination of Aerosols with the Help of Quantimet,” reprint, Imanco Computer, Ltd., Monsey, N.Y.1975.
  11. H. Rieck, “Holographic Small Particle Analysis with Ultraviolet Ruby Laser Light,” in The Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, Eds. (Cambridge U.P., London, 1970), p. 261.
  12. K. J. Ebeling, Ph.D. Thesis, U. Göttingen (1976).
  13. G. M. Fitton, Proc. Soc. Photo-Opt. Instrum. Eng. 40, 61 (1976).
  14. R. G. Knollenberg, Appl. Opt. 18, 3602 (1970).
    [CrossRef]
  15. L. G. Roberts, in Optical and Electrooptical Information Processing, J. T. Tippett et al. Eds. (MIT Press, Cambridge, 1965), p. 159.
  16. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).
  17. L. Abele, C. Lange, Inf. Fachber. 17, 329 (1978).
  18. G. Haussmann, W. Lauterborn, Inf. Fachber. 17, 275 (1978).
    [CrossRef]
  19. G. Haussmann, Inf. Fachber. 20, 94 (1979).
    [CrossRef]
  20. G. Haussmann, Ph.D. Thesis, U. Göttingen (1979).
  21. R. Butt, K. Hinsch, Proc. Soc. Photo-Opt. Instrum. Eng.210, in press (1980).
  22. H. Stark, G. Shao, Appl. Opt. 16, 670 (1977).
    [CrossRef]
  23. J. Gebhart, in Proceedings, Second European Symposium on Particle Characterization, K. Leschonski, W. Hufnagel, Eds. (NMA, Nuremberg, 1979), p. 149.

1979

G. Haussmann, Inf. Fachber. 20, 94 (1979).
[CrossRef]

1978

K. J. Ebeling, W. Lauterborn, Appl. Opt. 17, 2071 (1978).
[CrossRef] [PubMed]

L. Abele, C. Lange, Inf. Fachber. 17, 329 (1978).

G. Haussmann, W. Lauterborn, Inf. Fachber. 17, 275 (1978).
[CrossRef]

1977

K. J. Ebeling, W. Lauterborn, Opt. Commun. 21, 67 (1977).
[CrossRef]

W. Lauterborn, K. J. Ebeling, Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

W. Lauterborn, K. J. Ebeling, Proc. Soc. Photo-Opt. Instrum. Eng. 97, 96 (1977).

H. Stark, G. Shao, Appl. Opt. 16, 670 (1977).
[CrossRef]

1976

G. M. Fitton, Proc. Soc. Photo-Opt. Instrum. Eng. 40, 61 (1976).

1974

B. J. Thompson, J. Phys. E 7, 781 (1974).
[CrossRef]

1972

W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).

1970

1967

Abele, L.

L. Abele, C. Lange, Inf. Fachber. 17, 329 (1978).

Bader, F.

W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).

F. Bader, Ph.D. Thesis, U Göttingen (1973).

K. Hinsch, F. Bader, W. Lauterborn, “The Dynamics of Cavitation Bubble Fields Studies by Double-Pulse Holography,” in Finite Amplitude Wave Effects in Fluids, L. Bjørnø, Ed. (IPC Science and Technology Press, Guilford, U.K., 1974), pp. 240–244.

Bexon, R.

R. Bexon, C. D. Bishop, J. Gibbs, “Holographic Size Determination of Aerosols with the Help of Quantimet,” reprint, Imanco Computer, Ltd., Monsey, N.Y.1975.

Bishop, C. D.

R. Bexon, C. D. Bishop, J. Gibbs, “Holographic Size Determination of Aerosols with the Help of Quantimet,” reprint, Imanco Computer, Ltd., Monsey, N.Y.1975.

Butt, R.

R. Butt, K. Hinsch, Proc. Soc. Photo-Opt. Instrum. Eng.210, in press (1980).

Ebeling, K. J.

K. J. Ebeling, W. Lauterborn, Appl. Opt. 17, 2071 (1978).
[CrossRef] [PubMed]

W. Lauterborn, K. J. Ebeling, Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

K. J. Ebeling, W. Lauterborn, Opt. Commun. 21, 67 (1977).
[CrossRef]

W. Lauterborn, K. J. Ebeling, Proc. Soc. Photo-Opt. Instrum. Eng. 97, 96 (1977).

K. J. Ebeling, Ph.D. Thesis, U. Göttingen (1976).

Fitton, G. M.

G. M. Fitton, Proc. Soc. Photo-Opt. Instrum. Eng. 40, 61 (1976).

Gebhart, J.

J. Gebhart, in Proceedings, Second European Symposium on Particle Characterization, K. Leschonski, W. Hufnagel, Eds. (NMA, Nuremberg, 1979), p. 149.

Gibbs, J.

R. Bexon, C. D. Bishop, J. Gibbs, “Holographic Size Determination of Aerosols with the Help of Quantimet,” reprint, Imanco Computer, Ltd., Monsey, N.Y.1975.

Haussmann, G.

G. Haussmann, Inf. Fachber. 20, 94 (1979).
[CrossRef]

G. Haussmann, W. Lauterborn, Inf. Fachber. 17, 275 (1978).
[CrossRef]

G. Haussmann, Ph.D. Thesis, U. Göttingen (1979).

Hinsch, K.

W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).

R. Butt, K. Hinsch, Proc. Soc. Photo-Opt. Instrum. Eng.210, in press (1980).

K. Hinsch, F. Bader, W. Lauterborn, “The Dynamics of Cavitation Bubble Fields Studies by Double-Pulse Holography,” in Finite Amplitude Wave Effects in Fluids, L. Bjørnø, Ed. (IPC Science and Technology Press, Guilford, U.K., 1974), pp. 240–244.

Knollenberg, R. G.

Lange, C.

L. Abele, C. Lange, Inf. Fachber. 17, 329 (1978).

Lauterborn, W.

G. Haussmann, W. Lauterborn, Inf. Fachber. 17, 275 (1978).
[CrossRef]

K. J. Ebeling, W. Lauterborn, Appl. Opt. 17, 2071 (1978).
[CrossRef] [PubMed]

W. Lauterborn, K. J. Ebeling, Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

K. J. Ebeling, W. Lauterborn, Opt. Commun. 21, 67 (1977).
[CrossRef]

W. Lauterborn, K. J. Ebeling, Proc. Soc. Photo-Opt. Instrum. Eng. 97, 96 (1977).

W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).

K. Hinsch, F. Bader, W. Lauterborn, “The Dynamics of Cavitation Bubble Fields Studies by Double-Pulse Holography,” in Finite Amplitude Wave Effects in Fluids, L. Bjørnø, Ed. (IPC Science and Technology Press, Guilford, U.K., 1974), pp. 240–244.

Pratt, W. K.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).

Rieck, H.

H. Rieck, “Holographic Small Particle Analysis with Ultraviolet Ruby Laser Light,” in The Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, Eds. (Cambridge U.P., London, 1970), p. 261.

Roberts, L. G.

L. G. Roberts, in Optical and Electrooptical Information Processing, J. T. Tippett et al. Eds. (MIT Press, Cambridge, 1965), p. 159.

Shao, G.

H. Stark, G. Shao, Appl. Opt. 16, 670 (1977).
[CrossRef]

Stark, H.

H. Stark, G. Shao, Appl. Opt. 16, 670 (1977).
[CrossRef]

Thompson, B. J.

Ward, J. H.

Zinky, W. R.

Acoustica

W. Lauterborn, K. Hinsch, F. Bader, Acoustica 26, 170 (1972).

Appl. Opt.

Appl. Phys. Lett.

W. Lauterborn, K. J. Ebeling, Appl. Phys. Lett. 31, 663 (1977).
[CrossRef]

Inf. Fachber.

L. Abele, C. Lange, Inf. Fachber. 17, 329 (1978).

G. Haussmann, W. Lauterborn, Inf. Fachber. 17, 275 (1978).
[CrossRef]

G. Haussmann, Inf. Fachber. 20, 94 (1979).
[CrossRef]

J. Phys. E

B. J. Thompson, J. Phys. E 7, 781 (1974).
[CrossRef]

Opt. Commun.

K. J. Ebeling, W. Lauterborn, Opt. Commun. 21, 67 (1977).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

W. Lauterborn, K. J. Ebeling, Proc. Soc. Photo-Opt. Instrum. Eng. 97, 96 (1977).

G. M. Fitton, Proc. Soc. Photo-Opt. Instrum. Eng. 40, 61 (1976).

Other

K. Hinsch, F. Bader, W. Lauterborn, “The Dynamics of Cavitation Bubble Fields Studies by Double-Pulse Holography,” in Finite Amplitude Wave Effects in Fluids, L. Bjørnø, Ed. (IPC Science and Technology Press, Guilford, U.K., 1974), pp. 240–244.

L. G. Roberts, in Optical and Electrooptical Information Processing, J. T. Tippett et al. Eds. (MIT Press, Cambridge, 1965), p. 159.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).

F. Bader, Ph.D. Thesis, U Göttingen (1973).

G. Haussmann, Ph.D. Thesis, U. Göttingen (1979).

R. Butt, K. Hinsch, Proc. Soc. Photo-Opt. Instrum. Eng.210, in press (1980).

J. Gebhart, in Proceedings, Second European Symposium on Particle Characterization, K. Leschonski, W. Hufnagel, Eds. (NMA, Nuremberg, 1979), p. 149.

R. Bexon, C. D. Bishop, J. Gibbs, “Holographic Size Determination of Aerosols with the Help of Quantimet,” reprint, Imanco Computer, Ltd., Monsey, N.Y.1975.

H. Rieck, “Holographic Small Particle Analysis with Ultraviolet Ruby Laser Light,” in The Engineering Uses of Holography, E. R. Robertson, J. M. Harvey, Eds. (Cambridge U.P., London, 1970), p. 261.

K. J. Ebeling, Ph.D. Thesis, U. Göttingen (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup used for the recording of off-axis holograms with the help of a pulsed ruby laser: H, holographic plate; MS, ground-glass plate; O, object; ST, beam splitter; P, prism; S, mirror.

Fig. 2
Fig. 2

Real image of a ruby pulse hologram with air bubbles in water in two different planes of depth separated by a distance of 5 mm. (The diameter of the largest bubble in the image is ~0.8 mm.)

Fig. 3
Fig. 3

Experimental setup used for digital processing of real hologram reconstructions.

Fig. 4
Fig. 4

Image dissector camera mounted on a computer-controlled translation table. Camera is connected with the minicomputer and scans the real image without optics.

Fig. 5
Fig. 5

Local differential operator (Roberts cross-operator) applied to a holographic image with a focused bubble (a) without noise suppression, (b) intensity weighted with a linear ramp function, (c) with a triangular function, (d) with a rectangular function, (e) with a trapezoidal function, and (f) with a Gaussian function.

Fig. 6
Fig. 6

Definition of weighting functions WFC(I) for the suppression of noise in pictures filtered with differential operators: (a) intensity histogram of an input picture with a focused bubble; (b) different weighting function derived from the intensity histogram (a, linear ramp; b, triangle; c, rectangle; d, Gaussian; e, trapezoid).

Fig. 7
Fig. 7

Separation of contour points from noise points by simple thresholding of the differentially filtered picture 5e.

Fig. 8
Fig. 8

Connection between the input picture and the differentially filtered picture in different planes of depth of the real hologram reconstruction (F = focus): (a) cross section of the particle (intensity is inverted); (b) line of the differentially filtered picture without noise suppression; (c) intensity weighted with a trapezoidal weighting function.

Fig. 9
Fig. 9

Focusing parameter computed from the differentially filtered picture after intensity weighting as a function of the depth coordinate (Roberts cross-operator multiplied with a trapezoidal function). Two maxima indicate the exactly focused z positions of two bubbles.

Fig. 10
Fig. 10

Display from the computer program after the application of image processing programs to the image area. Morphological data of focused bubbles are computed based on sequential algorithms and displayed on the monitor.

Fig. 11
Fig. 11

Result of the test analysis of fast moving air bubbles in water recorded with the help of a pulsed ruby laser: (a) hologram reconstruction with the image volume analyzed; (b) result of the automatic processing. (Numbers give the area values in arbitrary units.)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d min > r max 2 λ .
d max = A r min 2 λ ,
G R A D I W ( A ) = G R A D ( A ) · W F C [ A V G ( A ) ] .
S N i S N max < T H R 1 .
B R L i P M i > T H R 2 ,

Metrics