Abstract

An extensive series of measurements of the intensity and polarization of the light from the zenith sky during periods of twilight was made at an altitude of 3400 m on the island of Hawaii during a 5-month period in 1977. This first of two papers is on the twilight polarization; the second will deal with intensity. The measurements were made in eight narrow spectral ranges between 0.32 and 0.90 μm under clear sky conditions. The data show that the degree of polarization at the zenith is a sensitive indicator of the existence of turbid layers at high levels in the atmosphere, and by monitoring the zenith skylight as a function of time during the twilight, it is possible to obtain qualitative information on both the altitude and relative density of the layers.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci., Sect. A 43, 76 (1956).
  2. J. V. Dave, Proc. Indian Acad. Sci., Sect. A 43, 336 (1956).
  3. G. M. Shah, Tellus 21, 636 (1969).
    [CrossRef]
  4. F. Link, M. T. Martel, Ann. Geophys. 32, 157 (1976).
  5. G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).
  6. W. G. Blattner, H. G. Horak, D. G. Collins, M. B. Wells, Appl. Opt. 13, 534 (1974).
    [CrossRef] [PubMed]
  7. N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).
  8. W. G. Blattner, in Proceedings, International Symposium on Radiation in the Atmosphere, Garmisch-Partenkirchen, 1976 (Princeton U. P., Princeton, 1976), p. 268.
  9. R. Robley, Ann. Geophys. 6, 157 (1950).
  10. E. V. Ashburn, J. Geophys. Res., 57, 85 (1952).
    [CrossRef]
  11. G. Dietze, Meteorol. Z. 19, 129 (1967).
  12. G. Dietze, PAGEOP 77, 159 (1969).
    [CrossRef]
  13. G. Steinhorst, Appl. Opt. 13, 219 (1974).
    [CrossRef]
  14. G. Steinhorst, Atmos. Phys. 50, 508 (1977).
  15. G. Dietze, G. Kohl, Meteorol. Z. 20, 209 (1968).
  16. K. L. Coulson, R. L. Walraven, preprint, Conf. on Atmos. Radiation, Am. Meteorol. Soc., Ft. Collins, Co., 161 (1972).
  17. G. Steinhorst, “Inversion Gemessener Polarisationsgrade zur Bestimmung der Stratosphärischen Aerosolkonzentration,” Ph.D. Dissertation, U. Mainz (1975).

1977

G. Steinhorst, Atmos. Phys. 50, 508 (1977).

1976

F. Link, M. T. Martel, Ann. Geophys. 32, 157 (1976).

1974

1969

G. M. Shah, Tellus 21, 636 (1969).
[CrossRef]

G. Dietze, PAGEOP 77, 159 (1969).
[CrossRef]

1968

G. Dietze, G. Kohl, Meteorol. Z. 20, 209 (1968).

1967

G. Dietze, Meteorol. Z. 19, 129 (1967).

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

1956

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci., Sect. A 43, 76 (1956).

J. V. Dave, Proc. Indian Acad. Sci., Sect. A 43, 336 (1956).

1952

E. V. Ashburn, J. Geophys. Res., 57, 85 (1952).
[CrossRef]

1950

R. Robley, Ann. Geophys. 6, 157 (1950).

Ashburn, E. V.

E. V. Ashburn, J. Geophys. Res., 57, 85 (1952).
[CrossRef]

Blattner, W. G.

W. G. Blattner, H. G. Horak, D. G. Collins, M. B. Wells, Appl. Opt. 13, 534 (1974).
[CrossRef] [PubMed]

W. G. Blattner, in Proceedings, International Symposium on Radiation in the Atmosphere, Garmisch-Partenkirchen, 1976 (Princeton U. P., Princeton, 1976), p. 268.

Collins, D. G.

Coulson, K. L.

K. L. Coulson, R. L. Walraven, preprint, Conf. on Atmos. Radiation, Am. Meteorol. Soc., Ft. Collins, Co., 161 (1972).

Dave, J. V.

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci., Sect. A 43, 76 (1956).

J. V. Dave, Proc. Indian Acad. Sci., Sect. A 43, 336 (1956).

Dietze, G.

G. Dietze, PAGEOP 77, 159 (1969).
[CrossRef]

G. Dietze, G. Kohl, Meteorol. Z. 20, 209 (1968).

G. Dietze, Meteorol. Z. 19, 129 (1967).

Divari, N. B.

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

Horak, H. G.

Kohl, G.

G. Dietze, G. Kohl, Meteorol. Z. 20, 209 (1968).

Link, F.

F. Link, M. T. Martel, Ann. Geophys. 32, 157 (1976).

Martel, M. T.

F. Link, M. T. Martel, Ann. Geophys. 32, 157 (1976).

Ramanathan, K. R.

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci., Sect. A 43, 76 (1956).

Robley, R.

R. Robley, Ann. Geophys. 6, 157 (1950).

Rozenberg, G. V.

G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).

Shah, G. M.

G. M. Shah, Tellus 21, 636 (1969).
[CrossRef]

Steinhorst, G.

G. Steinhorst, Atmos. Phys. 50, 508 (1977).

G. Steinhorst, Appl. Opt. 13, 219 (1974).
[CrossRef]

G. Steinhorst, “Inversion Gemessener Polarisationsgrade zur Bestimmung der Stratosphärischen Aerosolkonzentration,” Ph.D. Dissertation, U. Mainz (1975).

Walraven, R. L.

K. L. Coulson, R. L. Walraven, preprint, Conf. on Atmos. Radiation, Am. Meteorol. Soc., Ft. Collins, Co., 161 (1972).

Wells, M. B.

Ann. Geophys.

F. Link, M. T. Martel, Ann. Geophys. 32, 157 (1976).

R. Robley, Ann. Geophys. 6, 157 (1950).

Appl. Opt.

Atmos. Oceanic Phys.

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

Atmos. Phys.

G. Steinhorst, Atmos. Phys. 50, 508 (1977).

J. Geophys. Res.

E. V. Ashburn, J. Geophys. Res., 57, 85 (1952).
[CrossRef]

Meteorol. Z.

G. Dietze, Meteorol. Z. 19, 129 (1967).

G. Dietze, G. Kohl, Meteorol. Z. 20, 209 (1968).

PAGEOP

G. Dietze, PAGEOP 77, 159 (1969).
[CrossRef]

Proc. Indian Acad. Sci., Sect. A

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci., Sect. A 43, 76 (1956).

J. V. Dave, Proc. Indian Acad. Sci., Sect. A 43, 336 (1956).

Tellus

G. M. Shah, Tellus 21, 636 (1969).
[CrossRef]

Other

G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).

K. L. Coulson, R. L. Walraven, preprint, Conf. on Atmos. Radiation, Am. Meteorol. Soc., Ft. Collins, Co., 161 (1972).

G. Steinhorst, “Inversion Gemessener Polarisationsgrade zur Bestimmung der Stratosphärischen Aerosolkonzentration,” Ph.D. Dissertation, U. Mainz (1975).

W. G. Blattner, in Proceedings, International Symposium on Radiation in the Atmosphere, Garmisch-Partenkirchen, 1976 (Princeton U. P., Princeton, 1976), p. 268.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Degree of polarization of skylight at various wavelengths from the direction of the zenith during twilight and early sunrise period. Points indicate unsmoothed data; Curves represent an attempt to fit data by eye.

Fig. 2
Fig. 2

Degree of polarization of skylight at various wavelengths from the direction of the zenith during twilight and early sunrise period. Polarization scale has been staggered in 10% steps to separate curves.

Fig. 3
Fig. 3

Average degree of polarization of zenith skylight for low turbidity conditions at various wavelengths during twilight and early sunrise period. Curves are the average for the 9 clearest days on which measurements were made.

Fig. 4
Fig. 4

Averages and standard deviation of zenith skylight polarization at two wavelengths from data taken on the 9 clearest days for which measurements were made.

Fig. 5
Fig. 5

Degree of polarization of skylight in the direction of the zenith during the early morning of 2 days with moderately turbid atmospheric conditions as compared with the average for 9 low turbidity days.

Fig. 6
Fig. 6

Degree of polarization of skylight in the direction of the zenith during the early morning of 2 days with moderately turbid atmospheric conditions as compared with the average for 9 low turbidity days.

Fig. 7
Fig. 7

Degree of polarization of skylight in the direction of the zenith during the early morning of 2 days with moderate to heavy atmospheric turbidity as compared with the average for 9 low turbidity days.

Fig. 8
Fig. 8

Degree of polarization of skylight in the direction of the zenith during the early morning of a day with heavy turbidity in the low levels as compared with the average for 9 low turbidity days.

Fig. 9
Fig. 9

Values of the degree of polarization at a 0.80-μm wavelength in the direction of the zenith on the 43 days on which measurements were made. Upper solid curve represents the primary maximum (which occurred near sunrise), whereas the upper and lower ends of the vertical lines show the presunrise secondary maximum and the presunrise minimum, respectively. Dashed lines indicate the averages of the same quantities for 9 low turbidity days.

Fig. 10
Fig. 10

Comparison of zenith polarization measurements from an altitude of 1200 m in India with average clear-day measurements at Mauna Loa.

Fig. 11
Fig. 11

Comparison of zenith polarization measurements from an altitude of 2870 m in France (circles) and from a site in Greenland (dots) with average clear-day measurements at Mauna Loa.

Fig. 12
Fig. 12

Comparison of zenith polarization measurements made at an altitude of 4170 m in the Alps (Steinhorst) and at 1650 m in the Caucasus (Dietze and Kohl) with average clear-day measurements at Mauna Loa.

Fig. 13
Fig. 13

Spectral distribution of the degree of polarization of skylight from the direction of the zenith at various sun elevations under low turbidity conditions at Mauna Loa Observatory. The curves represent the averages for the clearest days for which measurements were made. In this and the following figures, the left-hand scale applies for the lower family of curves and the right-hand scale for the upper family.

Fig. 14
Fig. 14

Spectral distribution of the degree of polarization of skylight from the direction of the zenith at various sun elevations under the turbid atmospheric conditions of 3 Apr. above Mauna Loa. Curves for average low turbidity conditions and 0 and −5° sun elevations are given for comparison.

Fig. 15
Fig. 15

Spectral distribution of the degree of polarization of skylight from the direction of the zenith at various sun elevations under conditions of relatively dense tropospheric turbidity on 2 May 1977 at Mauna Loa. Curves for average low turbidity conditions and 0 and −5° sun elevations are given for comparison.

Tables (1)

Tables Icon

Table I Linear Correlation Coefficients between Features of the Polarization Field in the Zenith Direction during Twilight or at Sunrise and Various Meteorological Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( ψ ) = I e cos 2 ψ + I r sin 2 ψ + 1 2 U sin 2 ψ .

Metrics