Abstract

A novel experimental apparatus to record the near-field intensity distribution on the output facet of a laser diode along with the capability of displaying both the near- and far-field patterns is described. The overall optical magnification is 375 and the recorded near-field distribution is limited to a resolution of about 0.5 ψm on the mirror face, primarily as a result of diffraction. Also described here is a device to record far-field distribution to 0.5° accuracy. With the aid of a calibrated photodiode, the output power vs peak current characteristics can also be recorded.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
    [CrossRef]
  2. K. Kobayashi, R. Lang et al., Jpn. J. Appl. Phys. 16, 207 (1977).
    [CrossRef]
  3. P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
    [CrossRef]
  4. J. Buus, Electron. Lett. 14(5), 127 (2March1978).
    [CrossRef]
  5. T. L. Paoli, IEEE J. Quantum Electron. 13, 662 (1977).
    [CrossRef]
  6. N. Chinone, J. Appl. Phys. 48, 3237 (1977).
    [CrossRef]
  7. W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
    [CrossRef]
  8. R. Lang, “Lateral Transverse Mode Instability and its Stabilization in Stripe Geometry Injection Lasers,” to be published in IEEE J. Quantum Electron., special issue on Semiconductor Laser Conference.
  9. D. D. Cook, F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
    [CrossRef]
  10. H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).
  11. R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.
  12. W. L. Smith, A. J. DeGroot, M. J. Weber, Appl. Opt. 17, 3938 (1978).
    [CrossRef] [PubMed]

1978 (4)

J. Buus, Electron. Lett. 14(5), 127 (2March1978).
[CrossRef]

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
[CrossRef]

H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).

W. L. Smith, A. J. DeGroot, M. J. Weber, Appl. Opt. 17, 3938 (1978).
[CrossRef] [PubMed]

1977 (5)

T. L. Paoli, IEEE J. Quantum Electron. 13, 662 (1977).
[CrossRef]

N. Chinone, J. Appl. Phys. 48, 3237 (1977).
[CrossRef]

D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
[CrossRef]

K. Kobayashi, R. Lang et al., Jpn. J. Appl. Phys. 16, 207 (1977).
[CrossRef]

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

1975 (1)

D. D. Cook, F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
[CrossRef]

D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
[CrossRef]

R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.

Buus, J.

J. Buus, Electron. Lett. 14(5), 127 (2March1978).
[CrossRef]

Chinone, N.

N. Chinone, J. Appl. Phys. 48, 3237 (1977).
[CrossRef]

Cook, D. D.

D. D. Cook, F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

DeGroot, A. J.

Goodwin, A. R.

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

Kirkby, P. A.

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

Kobayashi, K.

K. Kobayashi, R. Lang et al., Jpn. J. Appl. Phys. 16, 207 (1977).
[CrossRef]

Lang, R.

K. Kobayashi, R. Lang et al., Jpn. J. Appl. Phys. 16, 207 (1977).
[CrossRef]

R. Lang, “Lateral Transverse Mode Instability and its Stabilization in Stripe Geometry Injection Lasers,” to be published in IEEE J. Quantum Electron., special issue on Semiconductor Laser Conference.

Lengyel, G.

H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).

Nash, F. R.

D. D. Cook, F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

Paoli, T. L.

T. L. Paoli, IEEE J. Quantum Electron. 13, 662 (1977).
[CrossRef]

Peled, S.

R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.

Scifres, D. R.

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
[CrossRef]

D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
[CrossRef]

R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.

Selway, P. R.

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

Smith, W. L.

Streifer, W.

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
[CrossRef]

D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
[CrossRef]

R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.

Thompson, G. H. B.

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

Weber, M. J.

Westermeier, H.

H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).

Wolf, H. D.

H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).

Appl. Opt. (1)

Electron. Lett. (1)

J. Buus, Electron. Lett. 14(5), 127 (2March1978).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. L. Paoli, IEEE J. Quantum Electron. 13, 662 (1977).
[CrossRef]

W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978).
[CrossRef]

P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977).
[CrossRef]

J. Appl. Phys. (2)

D. D. Cook, F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

N. Chinone, J. Appl. Phys. 48, 3237 (1977).
[CrossRef]

J. Vac. Sci. Technol. (1)

D. R. Scifres, R. D. Burnham, W. Streifer, J. Vac. Sci. Technol. 14, 186 (January/February1977).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kobayashi, R. Lang et al., Jpn. J. Appl. Phys. 16, 207 (1977).
[CrossRef]

Siemens Forsch. Entwicklungs ber. (1)

H. D. Wolf, H. Westermeier, G. Lengyel, Siemens Forsch. Entwicklungs ber. 7(1), 40 (1978).

Other (2)

R. D. Burnham, D. R. Scifres, W. Streifer, S. Peled, “Non Planar Large Optical Cavity GaAs/GaAlAs Semiconductor Laser,” to be published in Appl. Phys. Lett.

R. Lang, “Lateral Transverse Mode Instability and its Stabilization in Stripe Geometry Injection Lasers,” to be published in IEEE J. Quantum Electron., special issue on Semiconductor Laser Conference.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the setup to record and display near- (and far-) field intensity distribution: O1-objective; B.S.—beam splitter; M1—folding mirror; S1 and D—scanning slit and photodiode; D.F.—Neutral density filter; C1 and C2—Si cameras.

Fig. 2
Fig. 2

Schematic of far-field mapping setup.

Fig. 3
Fig. 3

Near-field intensity distribution as measured from a non-planar channeled L.O.C. type laser diode.

Fig. 4
Fig. 4

Near-field pattern as viewed on TV monitor No. 1.

Fig. 5
Fig. 5

Far-field pattern as viewed on TV monitor No. 2.

Fig. 6
Fig. 6

Typical near-field distribution line scanning, as viewed on the scope.

Fig. 7
Fig. 7

Far-field intensity distribution from a nonplanar channeled L.O.C. type laser diode, scanned in the direction of the junction.

Fig. 8
Fig. 8

Far-field intensity distribution as scanned in normal direction to the junction.

Fig. 9
Fig. 9

Power output as a function of the peak current.

Metrics