Abstract

The application of a multiple-pass Herriott cell to stimulated Raman scattering (SRS) is evaluated and demonstrated. The cell combines a long optical path length with periodic refocusing to enhance Raman gain. This technique is especially useful for reducing SRS threshold pump power in the IR where the Raman gain is low. This paper presents an analysis and design procedure for a multiple-pass Raman gain cell and gives experimental results for SRS in H2 gas.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, New York, 1954), Chap. 11, pp. 194–197.
  2. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  3. D. R. Herriott, H. J. Schulte, Appl. Opt. 4, 883 (1965).
    [CrossRef]
  4. N. V. Kravtsov, N. I. Naumkin, Sov. J. Quantum Electron. 6, 1438 (1976).
    [CrossRef]
  5. R. L. Byer, W. R. Trutna, Opt. Lett. 3, 144 (1978).
    [CrossRef] [PubMed]
  6. R. L. Byer, W. R. Trutna, paper P1 presented at the Tenth International Quantum Electronics Conference (29 May–1 June 1978), Atlanta, Ga.;also published in J. Opt. Soc. Am. 68, 1622 (1978).
  7. P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
    [CrossRef] [PubMed]
  8. A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
    [CrossRef]
  9. W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
    [CrossRef]
  10. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.1, pp. 297–301, Sec. 8.3, p. 302.
  11. H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
    [CrossRef]
  12. N. Bloembergen, Am. J. Phys. 35, 898 (1967).
    [CrossRef]
  13. R. L. Carmen, W. H. Lowdermilk, Phys. Rev. Lett. 33, 190 (1974).
    [CrossRef]
  14. R. H. Pantel, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).
  15. P. D. Maker, R. W. Terhune, Phys. Rev. A: 137, 801 (1965).
  16. M. L. Bhaumik, Am. J. Phys. 35, 330 (1967).
    [CrossRef]
  17. A. J. Glass, IEEE J. Quantum Electron. QE-3, 516 (1967).
    [CrossRef]
  18. D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
    [CrossRef]
  19. G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
    [CrossRef]
  20. A. E. Siegman, E. A. Sziklas, Appl. Opt. 13, 2775 (1974).
    [CrossRef] [PubMed]
  21. H. Kogelnik, paper presented at the Symposium on Quasi-Optics, Polytechnic Institute of Brooklyn, 8–10 June 1964, pp. 333–348.
  22. R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
    [CrossRef]
  23. W. R. Trutna, Y. K. Park, R. L. Byer, paper WI-10 at the Annual Meeting of the Optical Society of America, October 1978, San Francisco [J. Opt. Soc. Am. 68, A1395 (1978)].
  24. W. R. Fenner, H. A. Hyatt, J. M. Kellam, S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).
    [CrossRef]
  25. C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).
  26. H. W. Schotter, H. W. Klockner, in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 123–164.
    [CrossRef]
  27. R. W. Carlson, W. R. Fenner, Astrophys. J. 178, 551 (1972).
    [CrossRef]
  28. R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
    [CrossRef]
  29. G. Placzck, Handbuch der Radiologi (Leipzig Akademische Verlaggellschaft, 1943), Vol. 6, Pt. 2.
  30. E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
    [CrossRef]
  31. R. L. Byer, IEEE J. Quantum Electron. QE-12, 732 (1976).
    [CrossRef]
  32. R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
    [CrossRef]
  33. J. Ducuing, R. Frey, F. Pradera, in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 81–87.
  34. R. L. Byer, R. L. Herbst, “Parametric Oscillation and Mixing,” in Topics in Applied Physics, Vol. 16: Nonlinear Infrared Generation, Y. R. Shen, Ed. (Springer, Berlin, 1977).
    [CrossRef]
  35. A. Z. Graziuk, I. G. Zukarev, Appl. Phys. 17, 211 (1978).
    [CrossRef]
  36. J. A. Giordamine, W. Kaiser, Phys. Rev. 144, 676 (1966).
    [CrossRef]
  37. R. L. Byer, in Tunable Lasers and Applications, A. Mooradian, J. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 70–80.
  38. S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
    [CrossRef]
  39. P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
    [CrossRef]
  40. M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
    [CrossRef]
  41. S. J. Brosnan, “Tunable Infrared Generation Using Parametric and Raman Processes,” Ph.D. Dissertation, Applied Physics Department, Stanford U. (1979).
  42. G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 19, 51 (1978).
    [CrossRef]
  43. P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

1979 (1)

W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
[CrossRef]

1978 (5)

A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
[CrossRef]

A. Z. Graziuk, I. G. Zukarev, Appl. Phys. 17, 211 (1978).
[CrossRef]

G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 19, 51 (1978).
[CrossRef]

R. L. Byer, W. R. Trutna, Opt. Lett. 3, 144 (1978).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
[CrossRef] [PubMed]

1977 (5)

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
[CrossRef]

R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
[CrossRef]

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

1976 (2)

R. L. Byer, IEEE J. Quantum Electron. QE-12, 732 (1976).
[CrossRef]

N. V. Kravtsov, N. I. Naumkin, Sov. J. Quantum Electron. 6, 1438 (1976).
[CrossRef]

1975 (2)

R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
[CrossRef]

D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
[CrossRef]

1974 (2)

R. L. Carmen, W. H. Lowdermilk, Phys. Rev. Lett. 33, 190 (1974).
[CrossRef]

A. E. Siegman, E. A. Sziklas, Appl. Opt. 13, 2775 (1974).
[CrossRef] [PubMed]

1973 (1)

1972 (2)

C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).

R. W. Carlson, W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

1969 (1)

G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
[CrossRef]

1967 (4)

E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
[CrossRef]

M. L. Bhaumik, Am. J. Phys. 35, 330 (1967).
[CrossRef]

A. J. Glass, IEEE J. Quantum Electron. QE-3, 516 (1967).
[CrossRef]

N. Bloembergen, Am. J. Phys. 35, 898 (1967).
[CrossRef]

1966 (2)

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

J. A. Giordamine, W. Kaiser, Phys. Rev. 144, 676 (1966).
[CrossRef]

1965 (2)

D. R. Herriott, H. J. Schulte, Appl. Opt. 4, 883 (1965).
[CrossRef]

P. D. Maker, R. W. Terhune, Phys. Rev. A: 137, 801 (1965).

1964 (1)

Bhaumik, M. L.

M. L. Bhaumik, Am. J. Phys. 35, 330 (1967).
[CrossRef]

Birnbaum, G.

G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 19, 51 (1978).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Am. J. Phys. 35, 898 (1967).
[CrossRef]

Boyd, G. D.

G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
[CrossRef]

Brickman, R.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

Brosnan, S. J.

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

S. J. Brosnan, “Tunable Infrared Generation Using Parametric and Raman Processes,” Ph.D. Dissertation, Applied Physics Department, Stanford U. (1979).

Byer, R. L.

W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
[CrossRef]

R. L. Byer, W. R. Trutna, Opt. Lett. 3, 144 (1978).
[CrossRef] [PubMed]

R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
[CrossRef]

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

R. L. Byer, IEEE J. Quantum Electron. QE-12, 732 (1976).
[CrossRef]

R. L. Byer, R. L. Herbst, “Parametric Oscillation and Mixing,” in Topics in Applied Physics, Vol. 16: Nonlinear Infrared Generation, Y. R. Shen, Ed. (Springer, Berlin, 1977).
[CrossRef]

R. L. Byer, in Tunable Lasers and Applications, A. Mooradian, J. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 70–80.

W. R. Trutna, Y. K. Park, R. L. Byer, paper WI-10 at the Annual Meeting of the Optical Society of America, October 1978, San Francisco [J. Opt. Soc. Am. 68, A1395 (1978)].

R. L. Byer, W. R. Trutna, paper P1 presented at the Tenth International Quantum Electronics Conference (29 May–1 June 1978), Atlanta, Ga.;also published in J. Opt. Soc. Am. 68, 1622 (1978).

Carlson, R. W.

R. W. Carlson, W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

Carmen, R. L.

R. L. Carmen, W. H. Lowdermilk, Phys. Rev. Lett. 33, 190 (1974).
[CrossRef]

Cotter, D.

D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
[CrossRef]

Ducuing, J.

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

J. Ducuing, R. Frey, F. Pradera, in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 81–87.

Fenner, W. R.

Fleming, R. N.

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

Frey, R.

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

J. Ducuing, R. Frey, F. Pradera, in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 81–87.

Giordamine, J. A.

J. A. Giordamine, W. Kaiser, Phys. Rev. 144, 676 (1966).
[CrossRef]

Glass, A. J.

A. J. Glass, IEEE J. Quantum Electron. QE-3, 516 (1967).
[CrossRef]

Goldman, L. M.

C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).

Graziuk, A. Z.

A. Z. Graziuk, I. G. Zukarev, Appl. Phys. 17, 211 (1978).
[CrossRef]

Hagenlocker, E. E.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
[CrossRef]

Hanna, D. C.

D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
[CrossRef]

Harney, R. C.

R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
[CrossRef]

Herbst, R. L.

R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
[CrossRef]

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

R. L. Byer, R. L. Herbst, “Parametric Oscillation and Mixing,” in Topics in Applied Physics, Vol. 16: Nonlinear Infrared Generation, Y. R. Shen, Ed. (Springer, Berlin, 1977).
[CrossRef]

Herriott, D.

Herriott, D. R.

Hyatt, H. A.

Johnson, W. D.

G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
[CrossRef]

Kaiser, W.

J. A. Giordamine, W. Kaiser, Phys. Rev. 144, 676 (1966).
[CrossRef]

Kaldor, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

Kaminow, I. P.

G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
[CrossRef]

Kellam, J. M.

Klockner, H. W.

H. W. Schotter, H. W. Klockner, in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 123–164.
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
[CrossRef]

H. Kogelnik, paper presented at the Symposium on Quasi-Optics, Polytechnic Institute of Brooklyn, 8–10 June 1964, pp. 333–348.

Komine, H.

R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
[CrossRef]

Kompfner, R.

Kravtsov, N. V.

N. V. Kravtsov, N. I. Naumkin, Sov. J. Quantum Electron. 6, 1438 (1976).
[CrossRef]

Lankard, J. R.

M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Lapp, M.

C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).

Li, T.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Lowdermilk, W. H.

R. L. Carmen, W. H. Lowdermilk, Phys. Rev. Lett. 33, 190 (1974).
[CrossRef]

Loy, M. M. T.

M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Lukasik, J.

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, Phys. Rev. A: 137, 801 (1965).

McDowell, R. S.

A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
[CrossRef]

Milanovich, F. P.

R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
[CrossRef]

Minch, R. W.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
[CrossRef]

Naumkin, N. I.

N. V. Kravtsov, N. I. Naumkin, Sov. J. Quantum Electron. 6, 1438 (1976).
[CrossRef]

Owyoung, A.

A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
[CrossRef]

Pantel, R. H.

R. H. Pantel, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

Park, Y. K.

W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
[CrossRef]

W. R. Trutna, Y. K. Park, R. L. Byer, paper WI-10 at the Annual Meeting of the Optical Society of America, October 1978, San Francisco [J. Opt. Soc. Am. 68, A1395 (1978)].

Patterson, C. W.

A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
[CrossRef]

Penny, C. M.

C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).

Perry, B.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

Pierce, J. R.

J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, New York, 1954), Chap. 11, pp. 194–197.

Placzck, G.

G. Placzck, Handbuch der Radiologi (Leipzig Akademische Verlaggellschaft, 1943), Vol. 6, Pt. 2.

Porto, S. P. S.

Pradera, F.

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

J. Ducuing, R. Frey, F. Pradera, in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 81–87.

Puthoff, H. E.

R. H. Pantel, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

Rabinowitz, P.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

Rado, W. G.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
[CrossRef]

Randolph, J. E.

R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
[CrossRef]

Schotter, H. W.

H. W. Schotter, H. W. Klockner, in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 123–164.
[CrossRef]

Schulte, H. J.

Siegman, A. E.

A. E. Siegman, E. A. Sziklas, Appl. Opt. 13, 2775 (1974).
[CrossRef] [PubMed]

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.1, pp. 297–301, Sec. 8.3, p. 302.

Sorokin, P. P.

M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Stein, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Opt. Lett. 3, 147 (1978).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

Sziklas, E. A.

Terhune, R. W.

P. D. Maker, R. W. Terhune, Phys. Rev. A: 137, 801 (1965).

Trutna, W. R.

W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
[CrossRef]

R. L. Byer, W. R. Trutna, Opt. Lett. 3, 144 (1978).
[CrossRef] [PubMed]

R. L. Byer, W. R. Trutna, paper P1 presented at the Tenth International Quantum Electronics Conference (29 May–1 June 1978), Atlanta, Ga.;also published in J. Opt. Soc. Am. 68, 1622 (1978).

W. R. Trutna, Y. K. Park, R. L. Byer, paper WI-10 at the Annual Meeting of the Optical Society of America, October 1978, San Francisco [J. Opt. Soc. Am. 68, A1395 (1978)].

Wyatt, R.

D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
[CrossRef]

Zukarev, I. G.

A. Z. Graziuk, I. G. Zukarev, Appl. Phys. 17, 211 (1978).
[CrossRef]

Am. J. Phys. (2)

N. Bloembergen, Am. J. Phys. 35, 898 (1967).
[CrossRef]

M. L. Bhaumik, Am. J. Phys. 35, 330 (1967).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (2)

D. Cotter, D. C. Hanna, R. Wyatt, Appl. Phys. 8, 330 (1975).
[CrossRef]

A. Z. Graziuk, I. G. Zukarev, Appl. Phys. 17, 211 (1978).
[CrossRef]

Appl. Phys. Lett. (2)

S. J. Brosnan, R. N. Fleming, R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 30, 330 (1977).
[CrossRef]

M. M. T. Loy, P. P. Sorokin, J. R. Lankard, Appl. Phys. Lett. 30, 415 (1977).
[CrossRef]

Astrophys. J. (2)

R. W. Carlson, W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

R. C. Harney, J. E. Randolph, F. P. Milanovich, Astrophys. J. 200, 179 (1975).
[CrossRef]

Chem. Phys. Lett. (1)

A. Owyoung, C. W. Patterson, R. S. McDowell, Chem. Phys. Lett. 59, 156 (1978).
[CrossRef]

IEEE J. Quantum Electron. (5)

W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979).
[CrossRef]

A. J. Glass, IEEE J. Quantum Electron. QE-3, 516 (1967).
[CrossRef]

G. D. Boyd, W. D. Johnson, I. P. Kaminow, IEEE J. Quantum Electron. QE-5, 203 (1969).
[CrossRef]

R. L. Byer, IEEE J. Quantum Electron. QE-12, 732 (1976).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Birnbaum, J. Quant. Spectrosc. Radiat. Transfer 19, 51 (1978).
[CrossRef]

Nature London (1)

C. M. Penny, L. M. Goldman, M. Lapp, Nature London 235, 110 (1972).

Opt. Commun. (2)

R. L. Herbst, H. Komine, R. L. Byer, Opt. Commun. 21, 5 (1977); R. L. Byer, R. L. Herbst, Laser Focus 14, 48 (1978).
[CrossRef]

R. Frey, F. Pradera, J. Lukasik, J. Ducuing, Opt. Commun. 22, 355 (1977).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (2)

J. A. Giordamine, W. Kaiser, Phys. Rev. 144, 676 (1966).
[CrossRef]

E. E. Hagenlocker, R. W. Minch, W. G. Rado, Phys. Rev. 154, 226 (1967).
[CrossRef]

Phys. Rev. A (1)

P. D. Maker, R. W. Terhune, Phys. Rev. A: 137, 801 (1965).

Phys. Rev. Lett. (1)

R. L. Carmen, W. H. Lowdermilk, Phys. Rev. Lett. 33, 190 (1974).
[CrossRef]

Proc. IEEE (1)

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. V. Kravtsov, N. I. Naumkin, Sov. J. Quantum Electron. 6, 1438 (1976).
[CrossRef]

Other (13)

H. Kogelnik, paper presented at the Symposium on Quasi-Optics, Polytechnic Institute of Brooklyn, 8–10 June 1964, pp. 333–348.

J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, New York, 1954), Chap. 11, pp. 194–197.

W. R. Trutna, Y. K. Park, R. L. Byer, paper WI-10 at the Annual Meeting of the Optical Society of America, October 1978, San Francisco [J. Opt. Soc. Am. 68, A1395 (1978)].

H. W. Schotter, H. W. Klockner, in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 123–164.
[CrossRef]

R. H. Pantel, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.1, pp. 297–301, Sec. 8.3, p. 302.

R. L. Byer, in Tunable Lasers and Applications, A. Mooradian, J. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 70–80.

G. Placzck, Handbuch der Radiologi (Leipzig Akademische Verlaggellschaft, 1943), Vol. 6, Pt. 2.

J. Ducuing, R. Frey, F. Pradera, in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, Eds. (Springer, Berlin, 1976), pp. 81–87.

R. L. Byer, R. L. Herbst, “Parametric Oscillation and Mixing,” in Topics in Applied Physics, Vol. 16: Nonlinear Infrared Generation, Y. R. Shen, Ed. (Springer, Berlin, 1977).
[CrossRef]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, B. Perry (paper presented at Electro Optic Systems Conference, Anaheim, Calif., October 1979).

R. L. Byer, W. R. Trutna, paper P1 presented at the Tenth International Quantum Electronics Conference (29 May–1 June 1978), Atlanta, Ga.;also published in J. Opt. Soc. Am. 68, 1622 (1978).

S. J. Brosnan, “Tunable Infrared Generation Using Parametric and Raman Processes,” Ph.D. Dissertation, Applied Physics Department, Stanford U. (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A 1-D multiple-pass resonator.

Fig. 2
Fig. 2

Ray path in a 9-transit cell.

Fig. 3
Fig. 3

Illustration showing the effect of mirror misalignment on the optic axis of the resonator.

Fig. 4
Fig. 4

(a) Multiple-pass cell. (b) Anti-Stokes light scattered from the copper mirror surface for 1.064-μm pumped SRS in H2.

Fig. 5
Fig. 5

Schematic of the experimental setup for SRS studies at 1.064 μm.

Fig. 6
Fig. 6

Vibrational Raman threshold energy vs H2 pressure for 1.064-μm pumping. The ▲s are single-axial-mode, and the ●s are multiaxial-mode (~0.4 cm−1) pump bandwidth conditions. The pump pulse width is 8 ± 2 nsec.

Fig. 7
Fig. 7

Rotational and vibrational threshold pump power vs laser pulse width. The ●s are rotational threshold powers at 0.97-atm H2 pressure, and the ▲s are vibrational threshold powers at 8-atm H2 pressure.

Fig. 8
Fig. 8

Schematic of the experimental apparatus for SRS measurement using a CO2 laser pump source.

Fig. 9
Fig. 9

Dependence of the rotational Raman threshold at 1.06 μm, and the pressure-induced absorption at 10.6 μm on p-H2 pressure.

Fig. 10
Fig. 10

Output energy at 16.95 μm vs CO2 peak input power at 10.6 μm.

Equations (67)

Equations on this page are rendered with MathJax. Learn more.

g 1 = 1 - L R 1 ,             g 2 = 1 - L R 2 ,
r n = r 0 cos n θ + L g 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 ( r 0 - r 0 R 1 ) sin n θ ,
θ = cos - 1 ( 2 g 1 g 2 - 1 )
x n = x 0 cos n θ + L g 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 ( x - x 0 R 1 ) sin n θ y n = y 0 cos n θ + L g 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 ( y 0 - y 0 R 1 ) sin n θ } .
x 0 = L g 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 ( y 0 - y 0 R 1 ) y 0 = x 0 - x 0 R 1 = 0 } .
x n = x 0 cos n θ ,             y n = x 0 sin n θ .
r c = r 1 ( g 1 + 2 g 1 g 2 + g 2 4 g 2 ) 1 / 2 .
r 2 = r 1 ( g 1 g 2 ) 1 / 2 .
ω 1 = ( L λ π ) 1 / 2 [ g 2 g 1 ( 1 - g 1 g 2 ) ] 1 / 4 ,
ω 2 = ( L λ π ) 1 / 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 4 ,
ω 0 = ( L λ π ) 1 / 2 { [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 g 1 + g 2 - 2 g 1 g 2 } 1 / 2
t = L g 2 ( 1 - g 1 ) g 1 + g 2 - 2 g 1 g 2 .
β = 4 π / ( N + 1 ) .
1 J ( N + 1 ) / 4.
g = ± [ cos ( J β ) + 1 2 ] 1 / 2 .
ϕ = β - [ ( 3 ω m ) / r m ] ,
Δ θ d θ d g × Δ g = - 2 Δ g ( 1 - g 2 ) 1 / 2 .
| N - 1 2 J Δ θ | ϕ ,
Δ g J ( 1 - g 2 ) 1 / 2 N - 1 ( 4 π N + 1 - 3 ω m r m ) .
Δ g - Δ L R + ( L R 2 ) Δ R .
δ = ( 1 - g 1 ) ϕ 2 ( 1 - g 1 g 2 ) .
Δ 1 = L ϕ 2 1 - g 1 g 2 .
Δ 2 = - g 1 L ϕ 2 1 - g 1 g 2 .
δ = ( 1 - g 2 ) ϕ 1 ( 1 - g 1 g 2 ) ,
Δ 1 = - g 2 L ϕ 1 1 - g 1 g 2 ,
Δ 2 = L ϕ 1 1 - g 1 g 2 .
x n = F n ( x 0 , x 0 ) = x 0 cos n θ + L g 2 [ g 1 g 2 ( 1 - g 1 g 2 ) ] 1 / 2 × ( ( x 0 - x 0 R 1 ) sin n θ .
Δ x 0 F n x 0 Δ x 0 + F n x 0 Δ x 0
Δ x n Δ x 0 cos n θ + L g 2 [ g 1 g 2 ( 1 - g g 2 ) ] 1 / 2 × ( Δ x 0 - Δ x 0 / R 1 ) sin n Θ .
Δ x n = L ϕ 2 1 - g 1 g 2 cos n θ .
Δ x n = ( g 2 g 1 ) 1 / 2 L ϕ 1 ( 1 - g 1 g 2 ) cos [ n θ + cos - 1 ( g 1 g 2 ) 1 / 2 ] .
Δ x n = L ϕ 2 1 - g 1 g 2 ( cos n θ - 1 )
Δ x n = ( g 2 g 1 ) 1 / 2 L ϕ 1 ( 1 - g 1 g 2 ) { cos [ n θ + cos - 1 ( g 1 g 2 ) 1 / 2 ] - ( g 1 g 2 ) 1 / 2 }
ϕ 2 , max = ω 1 ( 1 - g 1 g 2 ) 2 L ,
ϕ 1 , max = ω 1 [ ( g 1 / g 2 ) 1 / 2 - g 1 ] L .
ϕ 2 , max = ω 2 [ ( g 2 / g 1 ) 1 / 2 - g 2 ] L ,
ϕ 1 , max = ω 2 ( 1 - g 1 g 2 ) 2 L .
g s = ω s χ R n s c E ˜ p 2 = G I p , G = 2 ω s χ R n s n p c 2 0 .
χ R = ( 2 π ) 3 n p c 4 0 Δ N ( d σ / d Ω ) π n s ω p ω s 3 Δ ω R ,
g s = [ 4 λ s 2 Δ N n s 2 ω p Δ ω R ( d σ d Ω ) ] I p .
α = 4 P p G λ p + λ s tan - 1 ( L b ) ,
b = 2 π ω p 0 2 / λ p ,
α n = n α
P s / P s 0 = R n exp [ α ( 1 + R + R 2 + R n ) ] = exp ( α n ) ,
α n = α ( 1 - R n 1 - R ) + n ln R .
σ 0 = 0 4 π d σ d Ω d Ω .
d σ d Ω = 3 8 π σ 0 ( 6 + sin 2 θ 10 ) ,
d σ d Ω = 3 20 π σ 0             and             d σ d Ω = 9 80 π σ 0 .
I o ( 16.95 μ m ) I i ( 10.6 μ m ) = ( ω o ω s ) 2 I s ( 1.106 μ m ) I p ( 1.064 μ m ) ,
- 2 E ˜ s + μ 2 t 2 E ˜ s = - μ 0 2 t 2 P ˜ s ,
E ˜ s ( r ¯ , t ) = 1 2 [ E ˜ s exp ( i k s z - i ω s t ) + c . c . ] ,
E ˜ p ( r ¯ , t ) = 1 2 [ E ˜ p exp ( i k p z - i ω p t ) + c . c . ] .
{ T 2 + 2 z 2 + i 2 k s z } E ˜ s = ω s 2 μ 0 P ˜ s ,
2 E s / z 2 i 2 k s E s / z .
P ˜ s = i 0 χ R E ˜ p E ˜ p * E ˜ s ,
{ T 2 + i 2 k s z } E ˜ s ( r ¯ ) = i k s g s ( r ¯ ) E ˜ s ( r ¯ ) ,
g s = ω s n s c χ R E ˜ p 2 = G I p ,
χ R = ( 2 π ) 3 n p c 4 0 Δ N d σ / d Ω π n s ω p ω s 3 Δ ω R .
g s = 4 λ s 2 Δ N n s 2 ω p Δ ω R ( d σ d Ω ) I p ,
I p ( x , y , z ) = P p 2 π 1 ω p 2 ( z ) exp - 2 ( x 2 + y 2 ) ω p 2 ( z ) ,
e 00 z P p G π 1 ω s 2 ( z ) + ω p 2 ( z ) e 00 .
e 00 ( - L / 2 ) e 00 ( + L / 2 ) d e 00 e 00 - L / 2 + L / 2 P p G π 1 ω s 2 ( z ) + ω p 2 ( z ) d z
ln [ e 00 ( out ) e 00 ( in ) ] A tan - 1 ( L B 2 ) ,
A = 2 P p G { λ p 2 [ 1 + ( ω s 0 / ω p 0 ) 2 ] + λ s 2 [ 1 + ( ω p 0 / ω s 0 ) 2 ] } , B = 1 π ω p 0 2 { λ p 2 [ 1 + ( ω s 0 / ω p 0 ) 2 ] + λ s 2 [ 1 + ( ω p 0 / ω s 0 ) 2 ] } [ 1 + ( ω s 0 / ω p 0 ) 2 ] .
ln e 00 ( out ) e 00 ( in ) π 2 A .
ω s 0 ω p 0 = ( λ s λ p ) 1 / 2 ,
α 4 P p G λ p = + λ s tan - 1 ( L b )

Metrics