Abstract

A fast analytical model of the transfer of solar radiation in plane-parallel clouds is developed by extending the Eddington approximation to handle an azimuthally dependent radiance field. When compared with the more precise doubling method, the results from this approximate model show a typical accuracy of better than 3% for fluxes and 10% for intensities over a wide range of input parameters. This accuracy may deteriorate somewhat for small cloud thicknesses, large solar zenith angles, viewing angles close to the horizon, or viewing angles close to the solar azimuthal direction. The computational speed of the analytical model is, however, a few hundred times faster than that of the more precise models, which makes it well suited for applications involving iteration over spectral intervals, time intervals, or cloud populations.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription