Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
    [CrossRef]
  2. R. A. Sprague, C. L. Koliopaulos, Appl. Opt. 15, 89 (1976); T. M. Turpin, Proc. Soc. Photo-Opt. Instrum. Eng. 154, 196 (1978).
    [CrossRef] [PubMed]
  3. H. J. Caulfield, W. T. Maloney, Appl. Opt. 8, 2354 (1969).
    [CrossRef] [PubMed]
  4. Our program is a modified version of that of W. J. Dixon, Biomedical Computer Programs (U. California Press, Berkeley, 1968).
  5. Y-t. Chien, Interactive Pattern Recognition (Dekker, New York, 1978).

1976 (1)

1969 (1)

1964 (1)

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Caulfield, H. J.

Chien, Y-t.

Y-t. Chien, Interactive Pattern Recognition (Dekker, New York, 1978).

Dixon, W. J.

Our program is a modified version of that of W. J. Dixon, Biomedical Computer Programs (U. California Press, Berkeley, 1968).

Koliopaulos, C. L.

Maloney, W. T.

Sprague, R. A.

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Inform. Theory (1)

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Other (2)

Our program is a modified version of that of W. J. Dixon, Biomedical Computer Programs (U. California Press, Berkeley, 1968).

Y-t. Chien, Interactive Pattern Recognition (Dekker, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

GMFs for distinguishing between a rectangle function in white noise and white noise only. The GMF for the rectangle function is a matched filter (a sine function), while the MGF for the noise is the negative of the sine function.

Fig. 2
Fig. 2

The GMFs for two rectangle functions in white noise and a GMF for white noise only. Note that sinclike appearance vanishes.

Fig. 3
Fig. 3

The response of the pulse train operated on by MFs for (a) the highest (narrowest) rectangle C2, (b) the middle-height rectangle C1, and (c) the lowest (widest) rectangle C3. Note the ambiguities, especially with C3.

Fig. 4
Fig. 4

The response of the pulse train of Fig. 3 to GMFs for (a) C2, (b) C1, and (c) C3. Note the resolution of all ambiguities as well as the anticorrelations at the centers of the wrong pulses.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

g ( 0 , 0 ) = k l F [ u k , v l ] M ( u k , v l ) .
LDF i ( x ) = S i ( x )
LDF i ( x ) = V i · X + S o i ,
V i = ( V 1 , , V N )
E [ LDF i ( x C i ) - LDF i ( x C i ) ]
E [ LDF i ( x C j ) ] = δ i j .
x C k .
C 1 = { f ( x , y ) + n ( x , y ) } ,
C 2 = { n ( x , y ) } ,
LDF 1 = MF 1 ,
LDF 2 = - MF 1 .
C 1 = { rect ( x ) + n ( x ) } ,
C 2 = { n ( x ) } ,
E [ n ( x ) ] = 0.1.
GMF 1 = MF 1 = sinc ( u ) ,
GMF 2 = MF 2 = - sinc ( u ) .
C 1 { rect ( x ) + n ( x ) } ,
C 2 = { rect ( 2 x ) = n ( x ) } ,
C 3 = { n ( x , y ) } ,
C 1 = { 1 7 rect ( 7 x ) + n ( x ) } ,
C 2 = { 1 6 rect ( 6 x ) + n ( x ) } ,
C 3 = { 1 8 rect ( 8 x ) + n ( x ) } ,
C 4 = n ( x ) .
1 2 3 ( 1 2 3 1 0.96 0.92 0.81 1 1 0.64 0.82 1 ) MF response             1 2 3 ( 1 2 3 1 0.07 - 0.28 0.38 1 - 0.04 0 - 0.06 1 ) GMF response

Metrics