Abstract

The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 Å, and preliminary results indicate the existence of useful response to at least 584 Å. The average conversion efficiency of coronene was measured to be ~20% at 2537 Å. Imagery at 3650 Å using a backside illuminated 800 × 800 CCD coated with coronene is presented.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Blouke, J. E. Hall, J. F. Breitzmann, “A 640,000 pixel CCD Imager for Space Applications,” in Proceedings, 1978 IEDM, Washington, D.C. (IEEE, Dec.1978).
  2. F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).
  3. H. Inokuchi, K. Harada, T. Kondow, J. Opt. Soc. Am. 54, 842 (1964).
    [CrossRef]
  4. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964).
  5. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).
  6. W. Viehmann, “Thin Film Scintillators for Extended UV-Response Silicon Detectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 196, (1979).
  7. A. B. Christensen, M. W. Cowens, M. M. Blouke, “Coronene Ultraviolet Fluorescence,” in preparation.
  8. D. E. Seib, IEEE Trans. Electron Devices ED-21, 217 (1974).

1979

W. Viehmann, “Thin Film Scintillators for Extended UV-Response Silicon Detectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 196, (1979).

1974

D. E. Seib, IEEE Trans. Electron Devices ED-21, 217 (1974).

1964

Birks, J. B.

J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964).

Blouke, M. M.

M. M. Blouke, J. E. Hall, J. F. Breitzmann, “A 640,000 pixel CCD Imager for Space Applications,” in Proceedings, 1978 IEDM, Washington, D.C. (IEEE, Dec.1978).

A. B. Christensen, M. W. Cowens, M. M. Blouke, “Coronene Ultraviolet Fluorescence,” in preparation.

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

Breitzmann, J. F.

M. M. Blouke, J. E. Hall, J. F. Breitzmann, “A 640,000 pixel CCD Imager for Space Applications,” in Proceedings, 1978 IEDM, Washington, D.C. (IEEE, Dec.1978).

Christensen, A. B.

A. B. Christensen, M. W. Cowens, M. M. Blouke, “Coronene Ultraviolet Fluorescence,” in preparation.

Cowens, M. W.

A. B. Christensen, M. W. Cowens, M. M. Blouke, “Coronene Ultraviolet Fluorescence,” in preparation.

Hall, J. E.

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

M. M. Blouke, J. E. Hall, J. F. Breitzmann, “A 640,000 pixel CCD Imager for Space Applications,” in Proceedings, 1978 IEDM, Washington, D.C. (IEEE, Dec.1978).

Harada, K.

Inokuchi, H.

Janesick, J. R.

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

Knapp, S. L.

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

Kondow, T.

Landauer, F. P.

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Seib, D. E.

D. E. Seib, IEEE Trans. Electron Devices ED-21, 217 (1974).

Viehmann, W.

W. Viehmann, “Thin Film Scintillators for Extended UV-Response Silicon Detectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 196, (1979).

IEEE Trans. Electron Devices

D. E. Seib, IEEE Trans. Electron Devices ED-21, 217 (1974).

J. Opt. Soc. Am.

Proc. Soc. Photo-Opt. Instrum. Eng.

W. Viehmann, “Thin Film Scintillators for Extended UV-Response Silicon Detectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 196, (1979).

Other

A. B. Christensen, M. W. Cowens, M. M. Blouke, “Coronene Ultraviolet Fluorescence,” in preparation.

J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964).

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

M. M. Blouke, J. E. Hall, J. F. Breitzmann, “A 640,000 pixel CCD Imager for Space Applications,” in Proceedings, 1978 IEDM, Washington, D.C. (IEEE, Dec.1978).

F. P. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. E. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” in Proceedings, 1978 GOMAC, Monterey, Calif. (Nov.1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photomicrograph of 800 × 800 CCD Imager.

Fig. 2
Fig. 2

Schematic diagram showing the overlap of the spectral response of a typical CCD and the fluorescence emission spectrum of coronene.3

Fig. 3
Fig. 3

Schematic representation of the geometry used to calculate the overall effective quantum efficiency of a thin phosphor layer on a silicon substrate.6

Fig. 4
Fig. 4

Diagram of the 0.5 m Seya-Namioka grating monochromator. Entrance slit is differentially pumped to permit higher pressure operation of the gas discharge source.

Fig. 5
Fig. 5

Spectral response curve of a CCD with ~1600 Å of coronene. Also presented are theoretical curves of response at constant quantum efficiency.

Fig. 6
Fig. 6

Imagery with a thinned backside illuminated 800 × 800 CCD coated with 1300 Å of coronene.

Fig. 7
Fig. 7

Modulation transfer function data for the device of Fig. 6. Spatial Nyquist frequency for this device is 33 cycles/mm.

Fig. 8
Fig. 8

Spectral response data before and after coating with 1600 Å of coronene, showing the enhancement in visible and near IR response.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η eff = ( 1 S ) ( 1 R 1 ) ( 1 R 2 ) × { F ( 1 F L ) A ( λ ) η ¯ [ 1 A ( λ ) ] η ( λ ) } ,
R 1 = { n film 1 n film + 1 } 2 , R 1 = { n Si n film n Si + n film } 2 , F L = 1 2 [ 1 ( n film 2 1 ) 1 / 2 n film ] .
η eff = 0.76 F η ¯ .

Metrics