Abstract

The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm−1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. W. Guinard, in Proceedings, Seventh International Symposium on Remote Sensing of the Environment, 17–21 May 1971 (Willow Run Laboratories, U. Michigan, Ann Arbor, 1971), pp. 1005–1026.
  2. R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.
  3. R. D. Watson, W. R. Hemphill, “Use of An Airborne Fraunhofer Line Discriminator for the Detection of Solar Stimulated Luminescence,” Open File Report 76202, U.S. Geological Survey, Flagstaff, Ariz. (1976).
  4. J. P. Hollinger, in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, Vol. 3, 15–19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1761.
  5. J. P. Hollinger, R. A. Mennella, Science 181, 54 (1973).
    [CrossRef] [PubMed]
  6. B. E. Troy, J. P. Hollinger, “Measurement of Oil Spill Volume by a Passive Microwave Imager,” Memorandum Report 3515, Naval Research Laboratory, Washington, D.C. (May1977).
  7. R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
    [CrossRef] [PubMed]
  8. R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor (Oct.1971).
  9. H. Visser, Appl. Opt. 18, 1746 (1979).
    [CrossRef] [PubMed]
  10. F. E. Hoge, J. S. Kincaid, Appl. Opt. 19, 1143 (1980).
    [CrossRef] [PubMed]
  11. R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics, Final Report,” Report 2766-7-F, Willow Run Laboratories of the Institute of Science and Technology, U. Michigan, Ann Arbor (Feb.1970).
  12. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 120–121. See also N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 134–135.
  13. A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
    [CrossRef]
  14. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  15. C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.
  16. M. Kasha, J. Opt. Soc. Am. 38, 929 (1948).
    [CrossRef] [PubMed]
  17. D. A. Leonard, B. Caputo, F. E. Hoge, Appl. Opt. 18, 1732 (1979).
    [CrossRef] [PubMed]
  18. B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.
  19. W. D. Garrett, “Impact of Petroleum Spills on the Chemical and Physical Properties of the Air/Sea Interface,” NRL Report 7372, Naval Research Laboratory, Washington, D.C. (Feb.1972).
  20. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
    [PubMed]

1980

1979

1978

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

1977

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

1976

1973

J. P. Hollinger, R. A. Mennella, Science 181, 54 (1973).
[CrossRef] [PubMed]

1948

Au, B.

B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.

Bressel, C.

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.

Caputo, B.

Donovan, T. J.

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

Frederick, E. B.

Garrett, W. D.

W. D. Garrett, “Impact of Petroleum Spills on the Chemical and Physical Properties of the Air/Sea Interface,” NRL Report 7372, Naval Research Laboratory, Washington, D.C. (Feb.1972).

Guinard, N. W.

N. W. Guinard, in Proceedings, Seventh International Symposium on Remote Sensing of the Environment, 17–21 May 1971 (Willow Run Laboratories, U. Michigan, Ann Arbor, 1971), pp. 1005–1026.

Hemphill, W. R.

R. D. Watson, W. R. Hemphill, “Use of An Airborne Fraunhofer Line Discriminator for the Detection of Solar Stimulated Luminescence,” Open File Report 76202, U.S. Geological Survey, Flagstaff, Ariz. (1976).

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

Henry, M. E.

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

Hoge, F. E.

F. E. Hoge, J. S. Kincaid, Appl. Opt. 19, 1143 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, F. E. Hoge, Appl. Opt. 18, 1732 (1979).
[CrossRef] [PubMed]

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.

Hollinger, J. P.

J. P. Hollinger, R. A. Mennella, Science 181, 54 (1973).
[CrossRef] [PubMed]

J. P. Hollinger, in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, Vol. 3, 15–19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1761.

B. E. Troy, J. P. Hollinger, “Measurement of Oil Spill Volume by a Passive Microwave Imager,” Memorandum Report 3515, Naval Research Laboratory, Washington, D.C. (May1977).

Horvath, R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor (Oct.1971).

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics, Final Report,” Report 2766-7-F, Willow Run Laboratories of the Institute of Science and Technology, U. Michigan, Ann Arbor (Feb.1970).

Itzkan, I.

R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
[CrossRef] [PubMed]

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 120–121. See also N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 134–135.

Kakui, Y.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

Kasha, M.

Kashiwagi, H.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

Kenney, J.

B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.

Kincaid, J. S.

Kung, R. T. V.

Leonard, D. A.

Martin, L. U.

B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.

Mennella, R. A.

J. P. Hollinger, R. A. Mennella, Science 181, 54 (1973).
[CrossRef] [PubMed]

Morel, A.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Morgan, W. L.

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics, Final Report,” Report 2766-7-F, Willow Run Laboratories of the Institute of Science and Technology, U. Michigan, Ann Arbor (Feb.1970).

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor (Oct.1971).

Nanjo, M.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

Nunes, J. E.

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.

Prieur, L.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Ross, D.

B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.

Sato, T.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

Spellicy, R.

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics, Final Report,” Report 2766-7-F, Willow Run Laboratories of the Institute of Science and Technology, U. Michigan, Ann Arbor (Feb.1970).

Stewart, S. R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor (Oct.1971).

Suzuki, Y.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

Swift, R. N.

Theisen, A. F.

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

Troy, B. E.

B. E. Troy, J. P. Hollinger, “Measurement of Oil Spill Volume by a Passive Microwave Imager,” Memorandum Report 3515, Naval Research Laboratory, Washington, D.C. (May1977).

Visser, H.

Watson, R. D.

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

R. D. Watson, W. R. Hemphill, “Use of An Airborne Fraunhofer Line Discriminator for the Detection of Solar Stimulated Luminescence,” Open File Report 76202, U.S. Geological Survey, Flagstaff, Ariz. (1976).

Appl. Opt.

IEEE J. Oceanic Eng.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, IEEE J. Oceanic Eng. OE-3, No. 1000 (1978); Appl. Opt. 17, 3798 (1978).
[PubMed]

J. Opt. Soc. Am.

Limnol. Oceanogr.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Science

J. P. Hollinger, R. A. Mennella, Science 181, 54 (1973).
[CrossRef] [PubMed]

Other

B. E. Troy, J. P. Hollinger, “Measurement of Oil Spill Volume by a Passive Microwave Imager,” Memorandum Report 3515, Naval Research Laboratory, Washington, D.C. (May1977).

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics, Final Report,” Report 2766-7-F, Willow Run Laboratories of the Institute of Science and Technology, U. Michigan, Ann Arbor (Feb.1970).

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 120–121. See also N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 134–135.

N. W. Guinard, in Proceedings, Seventh International Symposium on Remote Sensing of the Environment, 17–21 May 1971 (Willow Run Laboratories, U. Michigan, Ann Arbor, 1971), pp. 1005–1026.

R. D. Watson, M. E. Henry, A. F. Theisen, T. J. Donovan, W. R. Hemphill, in Proceedings, Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, Nov. 1977 (American Chemical Society, Washington, D.C., 1977), pp. 667–671.

R. D. Watson, W. R. Hemphill, “Use of An Airborne Fraunhofer Line Discriminator for the Detection of Solar Stimulated Luminescence,” Open File Report 76202, U.S. Geological Survey, Flagstaff, Ariz. (1976).

J. P. Hollinger, in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, Vol. 3, 15–19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), p. 1761.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor (Oct.1971).

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1977), Vol. 2, pp. 1259–1268.

B. Au, J. Kenney, L. U. Martin, D. Ross, in Ref. 4, pp. 1763–1773.

W. D. Garrett, “Impact of Petroleum Spills on the Chemical and Physical Properties of the Air/Sea Interface,” NRL Report 7372, Naval Research Laboratory, Washington, D.C. (Feb.1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Definition of several theoretical model parameters using the general shape of the laser-induced fluorescence spectra from (a) ocean water having an optically thin floating oil film and (b) ocean water.

Fig. 2
Fig. 2

Oil thickness measurement range for a 337.1-nm airborne lidar having a ~103 dynamic range (10-bit, 1024-count) receiver/digitizer system. Extinction coefficients at laser and Raman wavelengths used for the calculations are given in Table I and the text.

Fig. 3
Fig. 3

Elevation and plan views of the Airborne Oceanographic Lidar illustrating the three major tiers and selected optical components. The spectrometer subsystem is detailed in Fig. 4.

Fig. 4
Fig. 4

Primary components and layout of the forty-channel spectrometer subsystem portion of the AOL. Spectrometer location in the AOL system is given in Fig. 3.

Fig. 5
Fig. 5

Basic AOL fluorosensor data acquisition system.

Fig. 6
Fig. 6

Corrected fluorescence spectra of LaRosa and Murban crude oil samples measured in the laboratory. Excitation source was a pulsed nitrogen laser operating at 337.1 nm.

Fig. 7
Fig. 7

(a) Airborne laser-induced fluorescence spectrum of seawater in the test site area immediately outside the oil slick. Spectrum is dominated by the OH-stretch water Raman return at 381 nm with only a small amount of fluorescence from the dissolved and particulate organic material in the water. (b) Airborne single-laser-pulse fluorescence spectra obtained over optically thin and optically thick regions of the LaRosa slick. (c) Airborne single-laser-pulse spectrum obtained over optically thin region of the Murban crude oil slick.

Fig. 8
Fig. 8

(a) Near-total suppression of the Raman peak signal Kr as the LaRosa crude oil slick was traversed. (b) Peak fluorescence emission at λf = 490 nm obtained from the LaRosa crude during the same pass as (a). (c) Oil thickness computed from the data in (a) by using Eq. (6) together with the laboratory measured extinction coefficients given in Table I.

Fig. 9
Fig. 9

(a) Observed suppression of the Raman peak as the Murban crude oil slick was overflown along its principal axis. (b) Channel 12 fluorescence emission at λf = 490 nm measured simultaneously with the Raman suppression in (a). (c) Oil thickness computed from the data in (a) by using Eq. (6) and the laboratory measured extinction coefficients given in Table I. AOL conical scanner was operated at 5 Hz during this overflight.

Fig. 10
Fig. 10

Airborne laser-induced fluorescence return signal amplitudes recorded in channels 1, 2, 3, 4, 5, and 12 during overflight of the LaRosa crude oil slick. The small amount of Raman signal present in channels 1 and 3 is discernible by noting the small amount of depression as the slick is encountered. Oil fluorescence in channel 12 at the peak wavelength near 490 nm is just visible above the noise.

Fig. 11
Fig. 11

Return signal amplitudes recorded in channels 1, 2, 3, 4, 5, and 12 during an overflight along the right edge of the Murban crude oil slick. The conical scanner operation gives rise to the 5-Hz amplitude modulation in all the Raman and fluorescence channels.

Fig. 12
Fig. 12

Oil thickness contour plot or image produced from the results in Fig. 9(c) and the simultaneously recorded azimuthal scan angle data.

Fig. 13
Fig. 13

(a) Wide area nonscan laser-induced water Raman suppression observed over a LaRosa crude oil slick having an age of 2.4 h. (b) Two-channel microwave radiometer data obtained by NASA Langley Research Center simultaneously with the AOL.

Tables (3)

Tables Icon

Table I Crude Oil Physical Parameters

Tables Icon

Table II AOL Oil Fluorosensing Mode Parameters

Tables Icon

Table III Experiment and Data Summary

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K i = η i P 0 { 1 exp [ ( κ e + κ i ) d ] } + ζ i P 0 exp [ ( κ e + κ i ) d ] + δ i r ψ P 0 exp [ ( κ e + κ i ) d ] ,
K i = ϕ i , o + ϕ i , b + K i , r ,
J i = ζ i P 0 + δ i r ψ P 0 .
K i ( ϕ i , o + ϕ i , b ) J i ζ i P 0 = exp [ ( κ e + κ i ) d ] .
d = 1 κ e + κ r ln ( K r ϕ r J r ζ r P 0 ) .
d = 1 κ e + κ r ln ( R R ) ,
d = 1 κ e + κ r ln Δ r .

Metrics