Abstract

A new method of stabilizing the output frequency of a He–Ne laser in a longitudinal magnetic field has been developed. With simple modifications to a standard He–Ne laser tube we obtain a frequency stability of <1 MHz (<10−9) for an averaging time of 1 sec and a long term (5 months) frequency reproducibility of ~±1 MHz.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Culshaw, J. Kannelaud, Phys. Rev. A: 136, 1209 (1964).
  2. W. J. Tomlinson, R. L. Fork, Phys. Rev. 164, 466 (1967).
    [CrossRef]
  3. M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
    [CrossRef]
  4. M. Sargeant, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.1974), Chap. 12.
  5. M. I. Dyakonov, Sov. Phys. JETP 22, 812 (1966).
  6. M. I. Dyakonov, V. I. Perel, Sov. Phys. JETP 23, 298 (1966).
  7. N. Umeda, M. Tsukiji, H. Takasaki, Appl. Opt. 19, 442 (1980) and references therein.
    [CrossRef] [PubMed]
  8. W. G. Schweitzer, E. G. Kessler, R. D. Deslattes, H. P. Layer, J. R. Whetstone, Appl. Opt. 12, 2927 (1973).
    [CrossRef] [PubMed]
  9. C. E. Moore, “Atomic Energy Levels,” Natl. Bur. Stand. U.S. Circ. 467 (1949).
  10. We used a Spectra-Physics model 155. Our use and specific mention of this product do not imply that it is the most suitable for our work or that similar products from other venders would be less suitable.
  11. A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.
  12. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  13. The Allan variance for n = 2 is equivalent toσ(τ)=1fA·[1N−1∑i=1N−1(fi+1−fi)2]1/2,where fA is the mean laser frequency, N is the number of immediately successive frequency measurements taken, and fi is the ith frequency measurement taken by counting during an interval τ.
  14. Comité Consultatif pour la Définition du Mètre (CCDM), 5th Session, June 1973 (Bureau International des Poids et Mesures, Sevres, France 92310, 1973), p. M26.
  15. Ref. 14, p. M58.
  16. G. H. Mikhnenko, E. D. Protsenko, E. D. Sendöl, Opt. Spektrosk. 32, 809 (1972) [Opt. Spectrosc. 32, 425 (1972)]. Quoted by Ref. 14, p. M40.
  17. N. A. Kalinine, Izmer. Tech. 12, 27 (1968). Quoted by Ref. 14, p. M40.
  18. J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).
  19. For example, Lamb-dip stabilization is commercially represented by the Spectra-Physics model 119 laser. Stabilization of an internal mirror laser in zero-magnetic field so that adjacent orthogonally polarized modes (linear polarization) have a fixed intensity ratio is represented commercially by the Tropel model 100. See, e.g., R. Balhorn, H. Kunzmann, F. Lebowsky, Appl. Opt. 11, 742 (1972); and PTB Report ME-13 (Physikalisch-Technische Bundesanstalt, Braunschweig, W. Germany, 1977), p. 115. Stabilization of an internal mirror laser in a finite magnetic field so that the two circularly polarized laser oscillations have the same amplitude is represented commercially by the Hewlett-Packard model 5526A. Mention of these products is for technical orientation and does not constitute an endorsement.
    [CrossRef]

1980 (1)

1976 (1)

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).

1975 (1)

A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.

1973 (1)

1972 (2)

1968 (1)

N. A. Kalinine, Izmer. Tech. 12, 27 (1968). Quoted by Ref. 14, p. M40.

1967 (2)

W. J. Tomlinson, R. L. Fork, Phys. Rev. 164, 466 (1967).
[CrossRef]

M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
[CrossRef]

1966 (3)

M. I. Dyakonov, Sov. Phys. JETP 22, 812 (1966).

M. I. Dyakonov, V. I. Perel, Sov. Phys. JETP 23, 298 (1966).

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

1964 (1)

W. Culshaw, J. Kannelaud, Phys. Rev. A: 136, 1209 (1964).

1949 (1)

C. E. Moore, “Atomic Energy Levels,” Natl. Bur. Stand. U.S. Circ. 467 (1949).

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Balhorn, R.

Culshaw, W.

W. Culshaw, J. Kannelaud, Phys. Rev. A: 136, 1209 (1964).

Deslattes, R. D.

Dyakonov, M. I.

M. I. Dyakonov, V. I. Perel, Sov. Phys. JETP 23, 298 (1966).

M. I. Dyakonov, Sov. Phys. JETP 22, 812 (1966).

Fork, R. L.

M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
[CrossRef]

W. J. Tomlinson, R. L. Fork, Phys. Rev. 164, 466 (1967).
[CrossRef]

Hall, J. L.

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).

Helmcke, J.

A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.

Kalinine, N. A.

N. A. Kalinine, Izmer. Tech. 12, 27 (1968). Quoted by Ref. 14, p. M40.

Kannelaud, J.

W. Culshaw, J. Kannelaud, Phys. Rev. A: 136, 1209 (1964).

Kessler, E. G.

Kramer, G.

A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.

Kunzmann, H.

Lamb, W. E.

M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
[CrossRef]

M. Sargeant, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.1974), Chap. 12.

Layer, H. P.

Lebowsky, F.

Lee, S. A.

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).

Mikhnenko, G. H.

G. H. Mikhnenko, E. D. Protsenko, E. D. Sendöl, Opt. Spektrosk. 32, 809 (1972) [Opt. Spectrosc. 32, 425 (1972)]. Quoted by Ref. 14, p. M40.

Moore, C. E.

C. E. Moore, “Atomic Energy Levels,” Natl. Bur. Stand. U.S. Circ. 467 (1949).

Perel, V. I.

M. I. Dyakonov, V. I. Perel, Sov. Phys. JETP 23, 298 (1966).

Protsenko, E. D.

G. H. Mikhnenko, E. D. Protsenko, E. D. Sendöl, Opt. Spektrosk. 32, 809 (1972) [Opt. Spectrosc. 32, 425 (1972)]. Quoted by Ref. 14, p. M40.

Sargeant, M.

M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
[CrossRef]

M. Sargeant, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.1974), Chap. 12.

Schweitzer, W. G.

Scully, M. O.

M. Sargeant, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.1974), Chap. 12.

Sendöl, E. D.

G. H. Mikhnenko, E. D. Protsenko, E. D. Sendöl, Opt. Spektrosk. 32, 809 (1972) [Opt. Spectrosc. 32, 425 (1972)]. Quoted by Ref. 14, p. M40.

Takasaki, H.

Tomlinson, W. J.

W. J. Tomlinson, R. L. Fork, Phys. Rev. 164, 466 (1967).
[CrossRef]

Tsukiji, M.

Umeda, N.

Weiss, C. O.

A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.

Whetstone, J. R.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. L. Hall, S. A. Lee, Appl. Phys. Lett. 29, 367 (1976).

Izmer. Tech. (1)

N. A. Kalinine, Izmer. Tech. 12, 27 (1968). Quoted by Ref. 14, p. M40.

Natl. Bur. Stand. U.S. Circ. (1)

C. E. Moore, “Atomic Energy Levels,” Natl. Bur. Stand. U.S. Circ. 467 (1949).

Opt. Spektrosk. (1)

G. H. Mikhnenko, E. D. Protsenko, E. D. Sendöl, Opt. Spektrosk. 32, 809 (1972) [Opt. Spectrosc. 32, 425 (1972)]. Quoted by Ref. 14, p. M40.

Phys. Rev. (2)

W. J. Tomlinson, R. L. Fork, Phys. Rev. 164, 466 (1967).
[CrossRef]

M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 436 (1967); M. Sargeant, W. E. Lamb, R. L. Fork, Phys. Rev. 164, 450 (1967).
[CrossRef]

Phys. Rev. A (1)

W. Culshaw, J. Kannelaud, Phys. Rev. A: 136, 1209 (1964).

Proc. IEEE (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Sov. Phys. JETP (2)

M. I. Dyakonov, Sov. Phys. JETP 22, 812 (1966).

M. I. Dyakonov, V. I. Perel, Sov. Phys. JETP 23, 298 (1966).

Z. Naturforsch. Teil A (1)

A related technique was used by G. Kramer, C. O. Weiss, J. Helmcke, Z. Naturforsch. Teil A: 30, 1128 (1975). Reversible counting has also been used for phase-locking in some of the JILA CH4-stabilized laser work.

Other (5)

We used a Spectra-Physics model 155. Our use and specific mention of this product do not imply that it is the most suitable for our work or that similar products from other venders would be less suitable.

The Allan variance for n = 2 is equivalent toσ(τ)=1fA·[1N−1∑i=1N−1(fi+1−fi)2]1/2,where fA is the mean laser frequency, N is the number of immediately successive frequency measurements taken, and fi is the ith frequency measurement taken by counting during an interval τ.

Comité Consultatif pour la Définition du Mètre (CCDM), 5th Session, June 1973 (Bureau International des Poids et Mesures, Sevres, France 92310, 1973), p. M26.

Ref. 14, p. M58.

M. Sargeant, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.1974), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured Zeeman beat frequencies between the left and right circularly polarized waves as a function of the laser’s optical frequency. The abscissa is the beat frequency between the Zeeman laser an an 129I2 stabilized He–Ne laser locked to the B peak. The solid line is a least squares fitted parabola.

Fig. 2
Fig. 2

Dotted lines are graphs of the dispersion functions for the left χ+ and right χ circularly polarized standing waves as a function of detuning from line center (in arbitrary units). Solid curve is the difference between these two functions, which is approximately proportional to the frequency difference between these two standing waves. Central minimum portion of the solid curve corresponds to the region where the data in Fig. 1 were taken.

Fig. 3
Fig. 3

Laser resonator modifications. The piezoelectric crystal (PZT) and two glass sleeves (GT) are slipped onto the laser and glued in place. The heater (HTR) is nichrome wire wrapped around ~2 cm of the tube length. The beat signal is detected by monitoring, through a linear polarizer (POL), the laser light emitted from the rear reflector.

Fig. 4
Fig. 4

Digitally integrating He–Ne laser frequency servo.

Fig. 5
Fig. 5

Allan variance of the He–Ne beat with I2 stabilized laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω ± = c 2 L n ± N ,
Δ ω = ω ± ω = c 2 L ( 1 n + 1 n ) N ω 0 [ χ + ( ν ) χ ( ν ) ] ,
σ(τ)=1fA·[1N1i=1N1(fi+1fi)2]1/2,

Metrics