Abstract

The damage tracks of high energy ions in dielectric materials can be etched until overlapping conical etch pits are obtained. If the depth of the pits is >λ/2, an effective graded-index layer with very low reflectivity is obtained. Broadband antireflection treatment achieving reflectivities of <10−4 has been applied to plastics like Lexan and Mylar.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fraunhofer, Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel denselben zuvorzukommen, 1817 (Gesammelte Schriften, München, 1888), pp. 35, 46.
  2. Rayleigh, Proc. R. Soc. London 41, 275 (1886).
    [CrossRef]
  3. H. D. Taylor, “On the Adjustment and Testing of Telescopic Objectives 1891,” reprinted by Grubb, Parsons & Co. (1946), p. 62; British Patent 29561.
  4. H. A. Macleod, Thin-Film Optical Filters (Elsevier, New York, 1969).
  5. M. J. Minot, J. Opt. Soc. Am. 66, 515 (1976).
    [CrossRef]
  6. A. B. Meinel, M. P. Meinel, Applied Solar Energy (Addison-Wesley, Reading, Mass., 1976).
  7. J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
    [CrossRef]
  8. R. B. Stephens, G. D. Cody, Thin Solid Films 45, 19 (1977).
    [CrossRef]
  9. E. Spiller, R. Feder, “X-Ray Lithography,” in X-Ray Optics, H. J. Queisser, Ed. (Springer, Berlin, 1977), p. 35.
    [CrossRef]
  10. Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), p. 429.
  11. F. L. Jones, H. J. Homer, J. Opt. Soc. Am. 31, 34 (1941).
    [CrossRef]
  12. F. H. Nicoll, F. E. Williams, J. Opt. Soc. Am. 33, 434 (1943).
    [CrossRef]
  13. S. F. Monaco, J. Opt. Soc. Am. 51, 280 (1961).
    [CrossRef]
  14. C. G. Bernhard, Endeavour 26, 79 (1967).
  15. P. B. Clapham, M. C. Hutley, Nature London 244, 281 (1973), M. C. Hutley, Opt. Eng. 15, 190 (1976).
    [CrossRef]
  16. R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).
  17. W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
    [CrossRef]
  18. J. H. Freeman, in Application of Ion Beams to Materials 1975, G. Carter, J. S. Colligon, W. Grant, Eds., Conference Series 28 (Institute of Physics, London, 1976), p. 340.
  19. J. G. Endriz, W. E. Spicer, Phys. Rev. B: 4, 4144 (1977).
    [CrossRef]
  20. U. Littmark, J. F. Ziegler, Ranges of Energetic Ions in Matter, Vol. 6, Stopping and Ranges of Ion in Matter (Pergamon, London, 1980).

1977 (2)

R. B. Stephens, G. D. Cody, Thin Solid Films 45, 19 (1977).
[CrossRef]

J. G. Endriz, W. E. Spicer, Phys. Rev. B: 4, 4144 (1977).
[CrossRef]

1976 (1)

1975 (2)

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
[CrossRef]

1973 (1)

P. B. Clapham, M. C. Hutley, Nature London 244, 281 (1973), M. C. Hutley, Opt. Eng. 15, 190 (1976).
[CrossRef]

1967 (1)

C. G. Bernhard, Endeavour 26, 79 (1967).

1961 (1)

1943 (1)

1941 (1)

1886 (1)

Rayleigh, Proc. R. Soc. London 41, 275 (1886).
[CrossRef]

Bartholoma, K. P.

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Beaujean, R.

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, Endeavour 26, 79 (1967).

Clapham, P. B.

P. B. Clapham, M. C. Hutley, Nature London 244, 281 (1973), M. C. Hutley, Opt. Eng. 15, 190 (1976).
[CrossRef]

Cody, G. D.

R. B. Stephens, G. D. Cody, Thin Solid Films 45, 19 (1977).
[CrossRef]

Cuomo, J. J.

J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
[CrossRef]

Dallmeyer, L.

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Endriz, J. G.

J. G. Endriz, W. E. Spicer, Phys. Rev. B: 4, 4144 (1977).
[CrossRef]

Enge, W.

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Feder, R.

E. Spiller, R. Feder, “X-Ray Lithography,” in X-Ray Optics, H. J. Queisser, Ed. (Springer, Berlin, 1977), p. 35.
[CrossRef]

Fleischer, R. L.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Fraunhofer, J.

J. Fraunhofer, Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel denselben zuvorzukommen, 1817 (Gesammelte Schriften, München, 1888), pp. 35, 46.

Freeman, J. H.

J. H. Freeman, in Application of Ion Beams to Materials 1975, G. Carter, J. S. Colligon, W. Grant, Eds., Conference Series 28 (Institute of Physics, London, 1976), p. 340.

Grabisch, K.

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Homer, H. J.

Hutley, M. C.

P. B. Clapham, M. C. Hutley, Nature London 244, 281 (1973), M. C. Hutley, Opt. Eng. 15, 190 (1976).
[CrossRef]

Jones, F. L.

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), p. 429.

Littmark, U.

U. Littmark, J. F. Ziegler, Ranges of Energetic Ions in Matter, Vol. 6, Stopping and Ranges of Ion in Matter (Pergamon, London, 1980).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Elsevier, New York, 1969).

Meinel, A. B.

A. B. Meinel, M. P. Meinel, Applied Solar Energy (Addison-Wesley, Reading, Mass., 1976).

Meinel, M. P.

A. B. Meinel, M. P. Meinel, Applied Solar Energy (Addison-Wesley, Reading, Mass., 1976).

Minot, M. J.

Monaco, S. F.

Nicoll, F. H.

Price, P. B.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Rayleigh,

Rayleigh, Proc. R. Soc. London 41, 275 (1886).
[CrossRef]

Spicer, W. E.

J. G. Endriz, W. E. Spicer, Phys. Rev. B: 4, 4144 (1977).
[CrossRef]

Spiller, E.

E. Spiller, R. Feder, “X-Ray Lithography,” in X-Ray Optics, H. J. Queisser, Ed. (Springer, Berlin, 1977), p. 35.
[CrossRef]

Stephens, R. B.

R. B. Stephens, G. D. Cody, Thin Solid Films 45, 19 (1977).
[CrossRef]

Taylor, H. D.

H. D. Taylor, “On the Adjustment and Testing of Telescopic Objectives 1891,” reprinted by Grubb, Parsons & Co. (1946), p. 62; British Patent 29561.

Walker, R. M.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

Williams, F. E.

Woodall, J. M.

J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
[CrossRef]

Ziegler, J. F.

J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
[CrossRef]

U. Littmark, J. F. Ziegler, Ranges of Energetic Ions in Matter, Vol. 6, Stopping and Ranges of Ion in Matter (Pergamon, London, 1980).

Appl. Phys. Lett. (1)

J. J. Cuomo, J. F. Ziegler, J. M. Woodall, Appl. Phys. Lett. 22, 557 (1975).
[CrossRef]

Endeavour (1)

C. G. Bernhard, Endeavour 26, 79 (1967).

J. Opt. Soc. Am. (4)

Nature London (1)

P. B. Clapham, M. C. Hutley, Nature London 244, 281 (1973), M. C. Hutley, Opt. Eng. 15, 190 (1976).
[CrossRef]

Nucl. Instrum. Methods (1)

W. Enge, K. Grabisch, L. Dallmeyer, K. P. Bartholoma, R. Beaujean, Nucl. Instrum. Methods 127, 125 (1975).
[CrossRef]

Phys. Rev. B (1)

J. G. Endriz, W. E. Spicer, Phys. Rev. B: 4, 4144 (1977).
[CrossRef]

Proc. R. Soc. London (1)

Rayleigh, Proc. R. Soc. London 41, 275 (1886).
[CrossRef]

Thin Solid Films (1)

R. B. Stephens, G. D. Cody, Thin Solid Films 45, 19 (1977).
[CrossRef]

Other (9)

E. Spiller, R. Feder, “X-Ray Lithography,” in X-Ray Optics, H. J. Queisser, Ed. (Springer, Berlin, 1977), p. 35.
[CrossRef]

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), p. 429.

H. D. Taylor, “On the Adjustment and Testing of Telescopic Objectives 1891,” reprinted by Grubb, Parsons & Co. (1946), p. 62; British Patent 29561.

H. A. Macleod, Thin-Film Optical Filters (Elsevier, New York, 1969).

A. B. Meinel, M. P. Meinel, Applied Solar Energy (Addison-Wesley, Reading, Mass., 1976).

J. H. Freeman, in Application of Ion Beams to Materials 1975, G. Carter, J. S. Colligon, W. Grant, Eds., Conference Series 28 (Institute of Physics, London, 1976), p. 340.

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (U. California Press, Berkeley, 1975).

U. Littmark, J. F. Ziegler, Ranges of Energetic Ions in Matter, Vol. 6, Stopping and Ranges of Ion in Matter (Pergamon, London, 1980).

J. Fraunhofer, Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel denselben zuvorzukommen, 1817 (Gesammelte Schriften, München, 1888), pp. 35, 46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated reflectivity for different graded-index transition layers between air (n = 1) and a substrate with ns = 1.6: A, n changes linearly with depth z; B, n changes linearly with optical depth nz; C, n changes quadratically with depth; and D, the change in the index is described by a Gaussian.

Fig. 2
Fig. 2

Scanning electron micrographs of Lexan surfaces bombarded with 2-MeV ions: (a) 2-MeV He ions, 2 × 1011-particles/cm2 exposure, developed for 15 min in 6N NaOH at 60°C; (b) 2-MeV carbon ions, 6 × 1011-particles/cm2 exposure, developed for 6 min in 6N NaOH at 53°C.

Fig. 3
Fig. 3

Measured reflectivity R of a polycarbonate window, treated as in Fig. 2(b) and increase in transmission ΔT. R and ΔT are normalized to one surface; the decrease in transmission for blue light is due to scattering.

Fig. 4
Fig. 4

Lexan window with ion track transition layer (left) and untreated (right).

Fig. 5
Fig. 5

Change of the transmission vs wavelength of a foil of Mylar D (thickness = 80 μm) exposed on one side to a flux of ~1012-cm−2 carbon ions with 2-MeV energy and developed in 6N NaOH at temperature of 35°C with the development time as a parameter. Heavy exposure produces some yellow coloration of the sample, which can be recognized by a decrease in transmission of <4000 Å even before development. Increasing development time reduces the reflectivity and increases the transmission. At λ = 400 nm maximum transmission is obtained for a development time of 6 min. Longer development results in increased scattering, which decreases the transmission again.

Tables (1)

Tables Icon

Table I Mean Range and Energy Loss Rate of lons of 2-MeV Energy in Carbon of Density 2.25 (from Ref. 20)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = 1 + 0.6 ( 1 z z 0 ) 2 ,
n = 1 + 0.6 exp ( z / z 0 ) 2 ,

Metrics