Abstract

A new simple method of determining the absorption coefficient of absorbing thin films is proposed as an application of the complex propagation constant of a guided wave in a thin film optical waveguide. This method was applied to both cases as examples: low index (polyurethane film top layer containing rhodamine 6G dye) and high index (evaporated ZnSe film top layer) absorbing top layers on the main glass guide. The absorption coefficients so determined were compared with the values given by Lambert’s method.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Archer, J. Opt. Soc. Am. 52, 970 (1962).
    [CrossRef]
  2. D. Malé, J. Phys. Radium 11, 332 (1950).
    [CrossRef]
  3. F. Abelès, C. R. Acad. Sci. 228, 553 (1949).
  4. T. Takano, J. Hamazaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
    [CrossRef]
  5. E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
    [CrossRef]
  6. T. E. Batchman, S. C. Rashleich, IEEE J. Quantum Electron. QE-8, 848 (1972).
    [CrossRef]
  7. A. Reisinger, Appl. Opt. 12, 1015 (1973).
    [CrossRef] [PubMed]
  8. Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
    [CrossRef]
  9. A. Reisinger, Appl. Phys. Lett. 23, 237 (1973).
    [CrossRef]
  10. I. P. Kaminow, W. L. Mammel, H. P. Weber, Appl. Opt. 13, 396 (1974).
    [CrossRef] [PubMed]
  11. J. N. Polky, G. L. Mitchell, J. Opt. Soc. Am. 64, 274 (1974).
    [CrossRef]
  12. K. Sasaki, T. Sasada, Appl. Phys. Lett. 33, 516 (1978).
    [CrossRef]
  13. K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
    [CrossRef]
  14. K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
    [CrossRef]
  15. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
  16. K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

1979 (2)

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
[CrossRef]

1978 (1)

K. Sasaki, T. Sasada, Appl. Phys. Lett. 33, 516 (1978).
[CrossRef]

1974 (2)

1973 (2)

A. Reisinger, Appl. Opt. 12, 1015 (1973).
[CrossRef] [PubMed]

A. Reisinger, Appl. Phys. Lett. 23, 237 (1973).
[CrossRef]

1972 (4)

T. Takano, J. Hamazaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

T. E. Batchman, S. C. Rashleich, IEEE J. Quantum Electron. QE-8, 848 (1972).
[CrossRef]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

1962 (1)

1950 (1)

D. Malé, J. Phys. Radium 11, 332 (1950).
[CrossRef]

1949 (1)

F. Abelès, C. R. Acad. Sci. 228, 553 (1949).

Abe, H.

K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
[CrossRef]

Abelès, F.

F. Abelès, C. R. Acad. Sci. 228, 553 (1949).

Archer, R. J.

Batchman, T. E.

T. E. Batchman, S. C. Rashleich, IEEE J. Quantum Electron. QE-8, 848 (1972).
[CrossRef]

Chiba, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Fukao, T.

K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

Furuya, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Garmire, E. M.

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

Hakuta, M.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Hamano, O.

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
[CrossRef]

K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

Hamazaki, J.

T. Takano, J. Hamazaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Hasumi, R.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Kamimura, T.

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

Kaminow, I. P.

Kaneko, H.

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

Malé, D.

D. Malé, J. Phys. Radium 11, 332 (1950).
[CrossRef]

Mammel, W. L.

Mitchell, G. L.

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

Polky, J. N.

Rashleich, S. C.

T. E. Batchman, S. C. Rashleich, IEEE J. Quantum Electron. QE-8, 848 (1972).
[CrossRef]

Reisinger, A.

A. Reisinger, Appl. Phys. Lett. 23, 237 (1973).
[CrossRef]

A. Reisinger, Appl. Opt. 12, 1015 (1973).
[CrossRef] [PubMed]

Saito, T.

K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

Sasada, T.

K. Sasaki, T. Sasada, Appl. Phys. Lett. 33, 516 (1978).
[CrossRef]

Sasaki, K.

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
[CrossRef]

K. Sasaki, T. Sasada, Appl. Phys. Lett. 33, 516 (1978).
[CrossRef]

K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

Stoll, H.

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

Suematsu, Y.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

Takano, T.

T. Takano, J. Hamazaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Watanabe, H.

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

Weber, H. P.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. Sasaki, T. Sasada, Appl. Phys. Lett. 33, 516 (1978).
[CrossRef]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, R. Hasumi, Appl. Phys. Lett. 21, 291 (1972).
[CrossRef]

A. Reisinger, Appl. Phys. Lett. 23, 237 (1973).
[CrossRef]

C. R. Acad. Sci. (1)

F. Abelès, C. R. Acad. Sci. 228, 553 (1949).

IEEE J. Quantum Electron. (3)

T. Takano, J. Hamazaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 763 (1972).
[CrossRef]

T. E. Batchman, S. C. Rashleich, IEEE J. Quantum Electron. QE-8, 848 (1972).
[CrossRef]

J. Appl. Phys. (2)

K. Sasaki, T. Kamimura, H. Kaneko, H. Watanabe, O. Hamano, J. Appl. Phys. 50, 6688 (1979).
[CrossRef]

K. Sasaki, O. Hamano, H. Abe, J. Appl. Phys. 50, 6694 (1979).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Radium (1)

D. Malé, J. Phys. Radium 11, 332 (1950).
[CrossRef]

Other (2)

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

K. Sasaki, T. Fukao, T. Saito, O. Hamano, in press, J. Appl. Phys.51, (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross-sectional structure of the model waveguide used in the analysis of case I.

Fig. 2
Fig. 2

Calculated relation between the absorption coefficient and the imaginary part of the complex propagation constant for case I at given parameters.

Fig. 3
Fig. 3

Cross-sectional structure of the mode waveguide used in the analysis of case II.

Fig. 4
Fig. 4

Calculated relation between the absorption coefficient and the imaginary part of the complex propagation constant for case II at given parameters.

Fig. 5
Fig. 5

Experimental configuration: 1, mirror; 2, lens; 3, polarizer; 4, coupling prism; 5, glass film waveguide; 6, substrate; 7, absorbing top layer; 8, decoupling prism; 9, cylindrical lens; 10, detector; 11, recorder.

Fig. 6
Fig. 6

Recorded trace of the output as an example.

Fig. 7
Fig. 7

Replotted curve of Fig. 6 in logarithmic scale.

Fig. 8
Fig. 8

Plottings of the experimentally given β″s on the theoretical lines for case I.

Fig. 9
Fig. 9

Plottings of the experimentally given β″s on the theoretical lines for case II.

Fig. 10
Fig. 10

Calculated β″s and derivatives of them against each parameter for case I.

Fig. 11
Fig. 11

Calculated β″s and derivatives of them against each parameter for case II.

Tables (2)

Tables Icon

Table I Determined Absorption Coefficients Compared with the Values Given by Lambert’s Method for Case I

Tables Icon

Table II Determined Absorption Coefficients Compared with the Values Given by Lambert’s Method for Case II

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( λ 1 2 λ 0 λ 2 ) sin λ 1 W λ 1 ( λ 0 + λ 2 ) cos λ 1 W = 0 ,
( λ 1 2 n 1 4 λ 0 λ 2 n 0 2 n 2 2 ) sin λ 1 W λ 1 n 1 2 ( λ 0 n 0 2 + λ 2 n 2 2 ) cos λ 1 W = 0 ,
( λ 1 2 λ 3 + λ 0 λ 2 2 ) sin λ 1 W sin λ 2 d λ 2 ( λ 0 λ 3 λ 1 2 ) sin λ 1 W cos λ 2 d λ 1 ( λ 0 λ 3 λ 2 2 ) cos λ 1 W sin λ 2 d λ 1 λ 2 ( λ 0 + λ 3 ) cos λ 1 W cos λ 2 d = 0 ,
( λ 1 2 λ 3 n 1 4 n 3 2 + λ 0 λ 2 2 n 0 2 n 2 4 ) sin λ 1 W sin λ 2 d λ 2 n 0 2 ( λ 0 λ 3 n 0 2 n 3 2 λ 1 2 n 1 4 ) sin λ 1 W cos λ 2 d λ 1 n 1 2 ( λ 0 λ 3 n 0 2 n 3 2 λ 2 2 n 2 4 ) cos λ 1 W sin λ 2 d λ 1 n 1 2 ( λ 0 λ 2 n 0 2 n 2 2 + λ 3 2 n 3 2 ) cos λ 1 W cos λ 2 d = 0 ,

Metrics