Abstract

We have designed a recording ophthalmoscope which requires substantially less light than conventional ophthalmoscopes or fundus cameras. A laser beam of <100-μW total power provides the flying spot on the subject’s retina, allowing an inversion of the usual division of the pupil: only the central half-millimeter is needed for illumination, and the remaining 50 mm2 are used for light collection. No optical image of the retina is formed, but a photomultiplier tube in a pupillary conjugate plane provides video signals to a TV monitor, where an image appears. A simple analysis explains the gain in sensitivity. Various manipulations of the image are described, some of which are uniquely possible with this system.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).
  2. V. K. Zworykin, G. A. Morton, Television, the Electronics of Image Transmission in Color and Monochrome (Wiley, New York, 1954), pp. 238–244, 946–952.
  3. F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in Fundus Photography and Fluorescein Angiography,” Vision Res. (in press).
  4. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  5. O. H. Schade, RCA Rev. 32, 567 (1971).
  6. F. A. Rosell, J. Opt. Soc. Am. 59, 539 (1969).
    [Crossref] [PubMed]
  7. J. W. Coltman, A. E. Anderson, Proc. IRE 48, 858 (1960).
    [Crossref]
  8. A. Rose, Vision: Human and Electronic (Plenum, New York, 1973).
  9. F. C. Delori, Retina Foundation, private communication.
  10. Ref. 8, pp. 11–21.
  11. Ref. 8, p. 34;A. Rose, J. Opt. Soc. Am. 38, 196 (1948).
    [Crossref] [PubMed]
  12. A. Rose, Vision: Human and Electronic (Plenum, New York, 1973), p. 46.
  13. F. C. Delori et al., Arch. Ophthalmol. 95, 861 (1977).
    [Crossref] [PubMed]
  14. L. Frisen, Invest. Ophthalmol. 12, 865 (1973).
    [PubMed]
  15. O. H. Schade, RCA Rev. 31, 60 (1970).
  16. O. Pomerantzeff, Invest. Ophthalmol. 14, 410 (1975).
  17. G. T. Timberlake, M. A. Mainster, R. H. Webb, “A New Method of Scotometry and Perimetry” (in preparation).
  18. M. L. Rubin, Surv. Ophthalmol. 9, 449 (1964); O. Pomerantzeff, C. L. Schepens, “Binocular Indirect Ophthalmoscopy,” in Controversial Aspects of the Management of Retinal Detachment, C. L. Schepens, C. D. J. Regan, Eds. (Little Brown, Boston, 1965).
  19. J. F. Butterfield, IEEE Int. Conv. Dig. 116 (March1972).

1979 (1)

O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).

1977 (1)

F. C. Delori et al., Arch. Ophthalmol. 95, 861 (1977).
[Crossref] [PubMed]

1975 (1)

O. Pomerantzeff, Invest. Ophthalmol. 14, 410 (1975).

1973 (1)

L. Frisen, Invest. Ophthalmol. 12, 865 (1973).
[PubMed]

1972 (1)

J. F. Butterfield, IEEE Int. Conv. Dig. 116 (March1972).

1971 (1)

O. H. Schade, RCA Rev. 32, 567 (1971).

1970 (1)

O. H. Schade, RCA Rev. 31, 60 (1970).

1969 (1)

1965 (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

1964 (1)

M. L. Rubin, Surv. Ophthalmol. 9, 449 (1964); O. Pomerantzeff, C. L. Schepens, “Binocular Indirect Ophthalmoscopy,” in Controversial Aspects of the Management of Retinal Detachment, C. L. Schepens, C. D. J. Regan, Eds. (Little Brown, Boston, 1965).

1960 (1)

J. W. Coltman, A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Anderson, A. E.

J. W. Coltman, A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Butterfield, J. F.

J. F. Butterfield, IEEE Int. Conv. Dig. 116 (March1972).

Coltman, J. W.

J. W. Coltman, A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Delori, F. C.

O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).

F. C. Delori et al., Arch. Ophthalmol. 95, 861 (1977).
[Crossref] [PubMed]

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in Fundus Photography and Fluorescein Angiography,” Vision Res. (in press).

F. C. Delori, Retina Foundation, private communication.

Frisen, L.

L. Frisen, Invest. Ophthalmol. 12, 865 (1973).
[PubMed]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

Mainster, M. A.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in Fundus Photography and Fluorescein Angiography,” Vision Res. (in press).

G. T. Timberlake, M. A. Mainster, R. H. Webb, “A New Method of Scotometry and Perimetry” (in preparation).

Morton, G. A.

V. K. Zworykin, G. A. Morton, Television, the Electronics of Image Transmission in Color and Monochrome (Wiley, New York, 1954), pp. 238–244, 946–952.

Parker, J. S.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in Fundus Photography and Fluorescein Angiography,” Vision Res. (in press).

Pomerantzeff, O.

O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).

O. Pomerantzeff, Invest. Ophthalmol. 14, 410 (1975).

Rose, A.

A. Rose, Vision: Human and Electronic (Plenum, New York, 1973), p. 46.

A. Rose, Vision: Human and Electronic (Plenum, New York, 1973).

Rosell, F. A.

Rubin, M. L.

M. L. Rubin, Surv. Ophthalmol. 9, 449 (1964); O. Pomerantzeff, C. L. Schepens, “Binocular Indirect Ophthalmoscopy,” in Controversial Aspects of the Management of Retinal Detachment, C. L. Schepens, C. D. J. Regan, Eds. (Little Brown, Boston, 1965).

Schade, O. H.

O. H. Schade, RCA Rev. 32, 567 (1971).

O. H. Schade, RCA Rev. 31, 60 (1970).

Timberlake, G. T.

G. T. Timberlake, M. A. Mainster, R. H. Webb, “A New Method of Scotometry and Perimetry” (in preparation).

Webb, R. H.

O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).

G. T. Timberlake, M. A. Mainster, R. H. Webb, “A New Method of Scotometry and Perimetry” (in preparation).

Zworykin, V. K.

V. K. Zworykin, G. A. Morton, Television, the Electronics of Image Transmission in Color and Monochrome (Wiley, New York, 1954), pp. 238–244, 946–952.

Arch. Ophthalmol. (1)

F. C. Delori et al., Arch. Ophthalmol. 95, 861 (1977).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

IEEE Int. Conv. Dig. (1)

J. F. Butterfield, IEEE Int. Conv. Dig. 116 (March1972).

Invest. Ophthalmol. (2)

L. Frisen, Invest. Ophthalmol. 12, 865 (1973).
[PubMed]

O. Pomerantzeff, Invest. Ophthalmol. 14, 410 (1975).

Invest. Ophthalmol. Visual Sci. (1)

O. Pomerantzeff, R. H. Webb, F. C. Delori, Invest. Ophthalmol. Visual Sci. 18, 630 (1979).

J. Opt. Soc. Am. (1)

Proc. IRE (1)

J. W. Coltman, A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

RCA Rev. (2)

O. H. Schade, RCA Rev. 32, 567 (1971).

O. H. Schade, RCA Rev. 31, 60 (1970).

Surv. Ophthalmol. (1)

M. L. Rubin, Surv. Ophthalmol. 9, 449 (1964); O. Pomerantzeff, C. L. Schepens, “Binocular Indirect Ophthalmoscopy,” in Controversial Aspects of the Management of Retinal Detachment, C. L. Schepens, C. D. J. Regan, Eds. (Little Brown, Boston, 1965).

Other (8)

G. T. Timberlake, M. A. Mainster, R. H. Webb, “A New Method of Scotometry and Perimetry” (in preparation).

V. K. Zworykin, G. A. Morton, Television, the Electronics of Image Transmission in Color and Monochrome (Wiley, New York, 1954), pp. 238–244, 946–952.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in Fundus Photography and Fluorescein Angiography,” Vision Res. (in press).

A. Rose, Vision: Human and Electronic (Plenum, New York, 1973).

F. C. Delori, Retina Foundation, private communication.

Ref. 8, pp. 11–21.

Ref. 8, p. 34;A. Rose, J. Opt. Soc. Am. 38, 196 (1948).
[Crossref] [PubMed]

A. Rose, Vision: Human and Electronic (Plenum, New York, 1973), p. 46.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical schematic of the system. All planes labeled P are optically conjugate to the subject’s pupil. All planes labeled R are conjugate to the retina. The input beam (striped) passes through a safety shutter SS, a beam expander BE, and a variable attenuator VA to the horizontal scanning mirror. There it is 5 cm in diameter and may be swept as much as 5° to either side (at 7.8 kHz). RE relays the beam to the vertical scanning mirror (60 Hz). The labeled raster plane is the location of various targets and masks, which will be in focus to the subject’s view. TM is a turning mirror, half-silvered so that D, the detector for the safety circuit, can monitor power and power density at a retinal conjugate. G is a Glan-Air prism used as an (optional) final polarizer. LO is currently a 28-diopter Nikon aspheric ophthalmoscopic lens. Light scattered from the retina emerges through the full pupil, is processed by LO, and collected by LC, presently an aspheric Fresnel lens. This light is shown stippled. Reflections and direct backscatter are blocked by stops S: S1 blocks the corneal reflex (first Purkinje image); S2 and S3, the reflections from LO. A is an (optional) polarization analyzer. LO′ places the photomultiplier at a pupillary conjugate. Filter F is most conveniently placed at this point.

Fig. 2
Fig. 2

Block diagram of electronics.

Fig. 3
Fig. 3

Raster plot. (Left) part of a single field. This is interlaced with three other fields (right) to make a complete frame. The total of 1050 lines are not separately distinguishable to the subject.

Fig. 4
Fig. 4

Geometry used to assess optical OSNs. AO is the area of one object element on the retina, which has Lambertian reflectivity R modified by directivity S. At a distance D is the eye’s pupil of area AP.

Fig. 5
Fig. 5

Appearance of the fundus. Pictures on the left were made with a Zeiss Fundus Camera (400 μJ), those on the right with the FSTVO (3 μJ). Upper pictures were made in red light and the lower ones in yellow (568 nm). The larger field of the FSTVO is apparent, as is the distortion at the sides due to the boustrophedon scan.

Fig. 6
Fig. 6

Zoomed view of the optic nerve head (disk) in 568-nm light. Actual disk diameter is ~1 mm.

Fig. 7
Fig. 7

Fluorescein angiogram. Excitation light is 502 nm, and retinal vessels appear in fluorescent light ~15 sec after an injection of sodium fluorescein. Only 50 mg was used here one-tenth of the normal clinical dose.

Tables (1)

Tables Icon

Table I Light Levels

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

OSN = C q N ( q N + q N S T + N D K ) 1 / 2
e = ( A O S R p i ) ( A P / 2 π D 2 ) τ ,
N = ( A O S R p i ) ( A p / 2 π D 2 ) τ ( 2.75 × 10 18 photons / J ) .
( OSN ) 2 = q C 2 N , where N = N / ( 1 + N S T / N + N D K / q N ) ,
( OSN ) 2 / q C 2 = ( A O S R p i ) ( A p / 2 π D 2 ) τ ( 2.75 × 10 18 photons / J ) .
p i = [ ( OSN ) 2 / q C 2 ] ( 2 π D 2 / A O A P S R τ ) ( 3.6 × 10 19 J / photon ) .
OSN = 5 A O = 25 × 10 6 mm 2 .
p i = 120 mW / cm 2 , conventional ophthalmoscope .
So e i = 120 mJ / cm 2 .

Metrics