Abstract

A real-time white light pseudocolor encoding technique for spatial frequency and density encodings is presented. In spatial frequency color coding, the encoding is accomplished by spatial filtering of the color signal spectra, while in density pseudocoloring, the encoding consists of contrast reversal of a color object image. The technique is simple, versatile, and economical to operate, which may offer some practical applications. Because the encoding colors are primarily derived from a white light source, the annoying coherent artifact noise can be substantially reduced. Since the encoding is obtained with a broad spatial band of the signal spectra, this technique offers no apparent resolution loss. We stress that this real-time white light pseudocolor encoding technique may offer several major advantages that previous techniques have offered. Experimental demonstrations of this pseudocolor encoding technique are also provided.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).
  2. J. M. Burch, J. Opt. Soc. Am. 60, 709A (1970).
  3. J. Bescos, T. C. Strand, Appl. Opt. 17, 2524 (1978).
    [PubMed]
  4. F. T. S. Yu, Opt. Lett. 3, 57 (1978).
    [CrossRef] [PubMed]
  5. F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
    [CrossRef]
  6. F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
    [CrossRef]
  7. G. Indebetouw, Appl. Opt. 16, 1951 (1977).
    [CrossRef] [PubMed]
  8. H. K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
    [CrossRef]
  9. A. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 191 (1978).
    [CrossRef]
  10. J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
    [CrossRef]
  11. T. H. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
    [CrossRef] [PubMed]
  12. F. T. S. Yu, Opt. Commun. 27, 23 (1978).
    [CrossRef]
  13. F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
    [CrossRef] [PubMed]
  14. F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
    [CrossRef] [PubMed]
  15. A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
    [CrossRef]
  16. G. W. Stroke, R. G. Zech, Phys. Lett. 25, 89 (1967).
    [CrossRef]
  17. S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
    [CrossRef]
  18. F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. (1980), in press.
  19. F. T. S. Yu, M. S. Dymek, to be submitted to Appl. Opt.

1980 (2)

F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
[CrossRef]

T. H. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

1979 (2)

F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
[CrossRef] [PubMed]

J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
[CrossRef]

1978 (6)

A. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 191 (1978).
[CrossRef]

J. Bescos, T. C. Strand, Appl. Opt. 17, 2524 (1978).
[PubMed]

F. T. S. Yu, Opt. Lett. 3, 57 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
[CrossRef]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
[CrossRef] [PubMed]

1977 (1)

1976 (1)

H. K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

1970 (2)

J. M. Burch, J. Opt. Soc. Am. 60, 709A (1970).

S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
[CrossRef]

1967 (1)

G. W. Stroke, R. G. Zech, Phys. Lett. 25, 89 (1967).
[CrossRef]

1964 (1)

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

1896 (1)

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Bescos, J.

J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
[CrossRef]

J. Bescos, T. C. Strand, Appl. Opt. 17, 2524 (1978).
[PubMed]

Burch, J. M.

J. M. Burch, J. Opt. Soc. Am. 60, 709A (1970).

Chao, T. H.

F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
[CrossRef]

T. H. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. (1980), in press.

Chen, H.

A. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 191 (1978).
[CrossRef]

F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
[CrossRef]

Dymek, M. S.

F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
[CrossRef]

F. T. S. Yu, M. S. Dymek, to be submitted to Appl. Opt.

Gea, M.

J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
[CrossRef]

Goodman, J. W.

H. K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Indebetouw, G.

Lee, S. H.

S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
[CrossRef]

Liu, H. K.

H. K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Milnes, A. G.

S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
[CrossRef]

Rheinberg, J.

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Santamaria, J.

J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
[CrossRef]

Strand, T. C.

Stroke, G. W.

G. W. Stroke, R. G. Zech, Phys. Lett. 25, 89 (1967).
[CrossRef]

Tai, A.

F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
[CrossRef] [PubMed]

F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
[CrossRef]

A. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 191 (1978).
[CrossRef]

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Yao, S. K.

S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
[CrossRef]

Yu, F. T. S.

T. H. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
[CrossRef]

F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
[CrossRef] [PubMed]

F. T. S. Yu, Opt. Lett. 3, 57 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
[CrossRef]

A. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 191 (1978).
[CrossRef]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. (1980), in press.

F. T. S. Yu, M. S. Dymek, to be submitted to Appl. Opt.

Zech, R. G.

G. W. Stroke, R. G. Zech, Phys. Lett. 25, 89 (1967).
[CrossRef]

Zhuang, S. L.

T. H. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. (1980), in press.

Appl. Opt. (4)

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

J. Opt. (2)

J. Santamaria, M. Gea, J. Bescos, J. Opt. 10, 151 (1979).
[CrossRef]

F. T. S. Yu, A. Tai, H. Chen, J. Opt. 9, 269 (1978).
[CrossRef]

J. Opt. Soc. Am. (2)

J. M. Burch, J. Opt. Soc. Am. 60, 709A (1970).

S. H. Lee, S. K. Yao, A. G. Milnes, J. Opt. Soc. Am. 60, 1379 (1970).
[CrossRef]

J. R. Microsc. Soc. (1)

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Nouv. Rev. Opt. (1)

H. K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Opt. Commun. (2)

F. T. S. Yu, T. H. Chao, M. S. Dymek, Opt. Commun. 32, 225 (1980).
[CrossRef]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. (1)

G. W. Stroke, R. G. Zech, Phys. Lett. 25, 89 (1967).
[CrossRef]

Other (2)

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. (1980), in press.

F. T. S. Yu, M. S. Dymek, to be submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Real-time white light pseudocolor encoder.

Fig. 2
Fig. 2

Spatial frequency pseudocolor encoding.

Fig. 3
Fig. 3

Contrast reversal density pseudocolor encoding.

Fig. 4
Fig. 4

Black-and-white picture of a spatial frequency pseudocolor encoded image of a resolution test target. In color the high spatial frequency components (edges) are red and the low spatial frequency components are blue.

Fig. 5
Fig. 5

Black-and-white picture of a spatial frequency encoded pseudocolor radar image. In color are high variation terrains are red and the low variation terrains are blue.

Fig. 6
Fig. 6

Black-and-white picture of a spatial frequency encoded pseudocolor (negative) radar image. In color the high spatial frequency terrains are red while the low spatial frequency terrains appear in blue.

Fig. 7
Fig. 7

Black-and-white picture of a density pseudocolor encoded image of a Ronchi grating. In color the dark bars appear green while the light bars appear red.

Fig. 8
Fig. 8

Black-and-white picture of a density pseudocolor encoded image of an x-ray transparency. In color the thicker bones are displayed in red and the fingers are in green.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = K ( 1 + 1 2 cos p 0 x + 1 2 cos q 0 y ) ,
E ( p , q ; λ ) = s ( x , y ) T ( x , y ) exp [ i ( x p + y q ) ] d x d y λ ,
E ( p , q ; λ ) = S ( p , q ) + 1 4 [ S ( p p 0 , q ) + S ( p + p 0 , q ) + S ( p , q q 0 ) + S ( p , q + q 0 ) ] ,
E ( p , q ; λ ) = S ( α , β ) + 1 4 [ S ( α λ f 2 π p 0 , β ) + S ( α + λ f 2 π p 0 , β ) + S ( α , β λ f 2 π q 0 ) + S ( α , β + λ f 2 π q 0 ) ] .
E ( p , q ; λ ) = S r ( p p 0 , q ) H 1 ( q ) + S r ( p , q q 0 ) H 1 ( p ) + S b ( p + p 0 , q ) H 2 ( q ) + S b ( p , q + q 0 ) H 2 ( p ) ,
g ( x , y ; λ ) = [ S r ( p p 0 , q ) H 1 ( q ) + S r ( p , q q 0 ) H 1 ( p ) ] × exp [ i ( p x + q y ) ] d p d q d λ + [ S b ( p + p 0 , p ) H 2 ( q ) + S b ( p , q + q 0 ) H 2 ( p ) ] exp [ i ( p x + q y ) ] d p d q ,
I ( x , y ) Δ λ r | exp ( i p 0 x ) s r ( x , y ) * h 1 ( y ) + exp ( i q 0 y ) s r ( x , y ) * h 1 ( x ) | 2 + Δ λ b | exp ( i p 0 x ) s b ( x , y ) * h 2 ( y ) + exp ( i q 0 y ) s b ( x , y ) * h 2 ( x ) | 2 ,
E ( p , q ; λ ) = S r ( p p 0 , q ) + S r ( p , q q 0 ) + S g ( p p 0 , q ) H ( q ) + S g ( p , q q 0 ) H ( p ) ,
H ( q ) = { 1 , q 0 , 1 , otherwise , H ( p ) = { 1 , p 0 , 1 , otherwise
g ( x , y ; λ ) = [ S r ( p p 0 , q ) + S r ( p , q q 0 ) ] × exp [ i ( p x + q y ) ] d x d y d λ + [ S g ( p p 0 , q ) H ( q ) + S g ( p , q q 0 ) H ( p ) ] × exp [ i ( p x + q y ) ] d x d y ,
g ( x , y ; λ ) = [ exp ( i p 0 x ) + exp ( i q 0 y ) ] s r ( x , y ) + [ exp ( i p 0 x ) + exp ( i q 0 y ) ] s g n ( x , y ) ,
s g n ( x , y ) = s g ( x , y ) 2 s g ( x , y ) ,
I ( x , y ) = | g ( x , y ; λ ) | 2 d λ = Δ λ r I r ( x , y ) + Δ λ g I g n ( x , y ) ,

Metrics