Abstract

The feasibility of maintaining a single-mode optical fiber interferometer in quadrature is demonstrated using a servo driven piezoelectrically stretched coiled fiber. The controller has a range of ~10−5–1000 rad with a stress voltage coefficient of ~2π rad/V.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
    [CrossRef]
  2. J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
    [CrossRef]
  3. D. A. Jackson, A. Dandridge, S. K. Sheem, Opt. Lett. 5, 139 (1980).
    [CrossRef] [PubMed]
  4. R. A. Steinberg, T. G. Giallorenzi, Appl. Opt. 15, 2440 (1976).
    [CrossRef] [PubMed]
  5. Y. Ohtsuka, K. Itoh, Appl. Opt. 18, 219 (1979); M. A. Nokes, B. C. Hill, A. E. Barelli, Rev. Sci. Instrum. 49, 722 (1978).
    [CrossRef] [PubMed]
  6. R. V. Schmidt, IEEE Trans. Sonics and Ultrasonics SU23, 22 (1976).
    [CrossRef]
  7. P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
    [CrossRef] [PubMed]
  8. S. A. Kingsley, Electron. Lett. 14, 420 (1978).
  9. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  10. H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
    [CrossRef]
  11. J. L. Douce, An Introduction to the Mathematics of Servo-mechanisms (Van Nostrand, Princeton, 1965).

1980

1979

1978

S. A. Kingsley, Electron. Lett. 14, 420 (1978).

1977

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

1976

R. A. Steinberg, T. G. Giallorenzi, Appl. Opt. 15, 2440 (1976).
[CrossRef] [PubMed]

R. V. Schmidt, IEEE Trans. Sonics and Ultrasonics SU23, 22 (1976).
[CrossRef]

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

1967

H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
[CrossRef]

Andrews, F. A.

H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
[CrossRef]

Bhuto, P. G.

J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Bucaro, J. A.

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Capprianica, R. R.

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

Carome, E. F.

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Cole, J. H.

J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Dandridge, A.

Darby, R. D.

H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
[CrossRef]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Deferrari, H. A.

H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
[CrossRef]

Douce, J. L.

J. L. Douce, An Introduction to the Mathematics of Servo-mechanisms (Van Nostrand, Princeton, 1965).

Dragsten, P. R.

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

Giallorenzi, T. G.

Itoh, K.

Jackson, D. A.

Johnson, R. L.

J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Kingsley, S. A.

S. A. Kingsley, Electron. Lett. 14, 420 (1978).

Ohtsuka, Y.

Paton, J. A.

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

Schmidt, R. V.

R. V. Schmidt, IEEE Trans. Sonics and Ultrasonics SU23, 22 (1976).
[CrossRef]

Sheem, K.

Sheem, S. K.

Steinberg, R. A.

Webb, W. W.

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

Appl. Opt.

Electron. Lett.

S. A. Kingsley, Electron. Lett. 14, 420 (1978).

IEEE Trans. Sonics and Ultrasonics

R. V. Schmidt, IEEE Trans. Sonics and Ultrasonics SU23, 22 (1976).
[CrossRef]

J. Acoust. Soc. Am.

P. R. Dragsten, W. W. Webb, J. A. Paton, R. R. Capprianica, J. Acoust. Soc. Am. 60, 665 (1976).
[CrossRef] [PubMed]

J. A. Bucaro, H. D. Dardy, E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

J. H. Cole, R. L. Johnson, P. G. Bhuto, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

H. A. Deferrari, R. D. Darby, F. A. Andrews, J. Acoust. Soc. Am. 42, 982 (1967).
[CrossRef]

Opt. Lett.

Other

J. L. Douce, An Introduction to the Mathematics of Servo-mechanisms (Van Nostrand, Princeton, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the SMFI with cylinder phase shifters in each arm. Information and drift simulation signals are applied to the cylinder in the signal arm. Correction and modulation signals (if required) are applied to the cylinder in the reference arm.

Fig. 2
Fig. 2

Dual beam oscilloscope trace of the ramp applied to the cylinder in the signal arm and the resultant sinusoidal signal at the detector. Scale for the ramp signal is 1 V/div.

Fig. 3
Fig. 3

Block diagram of compensator system.

Fig. 4
Fig. 4

Double exposure of oscilloscope trace from spectrum analyzer. Each trace is a measure of the amplitude at the signal frequency as a function of time. Steady trace is with the compensator circuit, oscillatory trace is without.

Fig. 5
Fig. 5

Amplitude measured at output for test signals at various frequencies: •, experimental points; —, derived from Eq. (2). All test signals had same amplitude. This figure is a measure of signal attenuation due to compensator circuit.

Fig. 6
Fig. 6

Minimum detectable phase shift as function of frequency: —, without compensator in drift-free environment; •, with compensator in laboratory environment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d L d V = L d 31 T ,
I A = I 0 + I 1 cos ϕ , I B = I 0 I 1 cos ϕ ,
R = ω / ( ω 2 + K 2 ) + 1 / 2 ,

Metrics