Abstract

A new method has been devised for producing microlenses on the ends of single-mode optical fibers. A lens is formed by dipping the fiber end into a negative photoresist while the fiber core carries ≳0.1 mW of He–Ne laser light. The photoresist lenses require no developing or rinsing. The lenses are shown to transform the near-Gaussian beam emitted by the fiber into another near-Gaussian beam with a reduced waist diameter. The size of the new waist can be selected by varying the number of times the fiber is dipped into the photoresist. The waist reduction is shown to increase coupling into single-mode optical waveguides.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, M. V. Schneider, Appl. Opt. 13, 89(1974).
    [CrossRef] [PubMed]
  2. E. Weidel, Electron. Lett. 11, 436 (1975).
    [CrossRef]
  3. D. Kato, J. Appl. Phys. 44, 2756 (1973).
    [CrossRef]
  4. C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
    [CrossRef]
  5. W. W. Benson, D. A. Pinnow, T. C. Rich, Appl. Opt. 14, 2815 (1975).
    [CrossRef] [PubMed]
  6. C. C. Timmermann, Appl. Opt. 15, 2432 (1976).
    [CrossRef] [PubMed]
  7. H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
    [CrossRef]
  8. A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 113–117.
  9. H. Kogelnik, in Proceedings, Symposium on Quasi-Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, N.Y., 1964), p. 333.
  10. W. K. Burns, G. B. Hocker, Appl. Opt. 16, 2048 (1977).
    [CrossRef] [PubMed]
  11. D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
    [CrossRef] [PubMed]

1979 (1)

1977 (1)

1976 (1)

1975 (2)

1974 (2)

1973 (1)

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

1966 (1)

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Benson, W. W.

Brackett, C. A.

C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
[CrossRef]

Burns, W. K.

Cohen, L. G.

Hall, D. G.

Hocker, G. B.

Kato, D.

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

H. Kogelnik, in Proceedings, Symposium on Quasi-Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, N.Y., 1964), p. 333.

Li, T.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Pinnow, D. A.

Rice, R. R.

Rich, T. C.

Schneider, M. V.

Timmermann, C. C.

Weidel, E.

E. Weidel, Electron. Lett. 11, 436 (1975).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 113–117.

Zino, J. D.

Appl. Opt. (4)

Electron. Lett. (1)

E. Weidel, Electron. Lett. 11, 436 (1975).
[CrossRef]

J. Appl. Phys. (2)

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

C. A. Brackett, J. Appl. Phys. 45, 2636 (1974).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Other (2)

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 113–117.

H. Kogelnik, in Proceedings, Symposium on Quasi-Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, N.Y., 1964), p. 333.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the system for measuring far-field intensity distribution. Equations describe the calculation of the 1/e2 waist diameter.

Fig. 2
Fig. 2

History of the measured waist diameter of a single fiber vs the number of dips into the photoresist.

Fig. 3
Fig. 3

Comparison of a Gaussian function to the measured far-field intensity distribution for a fiber with a lens.

Fig. 4
Fig. 4

Photographs at 475× for a fiber (a) before and (b) after dipping into photoresist.

Fig. 5
Fig. 5

Comparison of the beam intensity profiles for a fiber (a) with no lens and (b) with a lens.

Fig. 6
Fig. 6

Typical experimental coupling arrangement.

Fig. 7
Fig. 7

Measured light throughput (□) vs the fiber-to-waveguide distance for a fiber with a lens. The solid line is a guide to the eye.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 W 0 = 2 0.347 λ π tan ϕ 1 / 2 ,
η = 2 W 10 W 2 W 10 2 + W 2 2 .
η / η = 1.6.
T ( 2 W 10 = 2.3 μ m ) T ( 2 W 10 = 5.6 μ m ) = 1.6.

Metrics