Abstract

Bend-induced retardation and twist-induced rotation in single-mode optical fibers are important variables in the design of optical fiber current measurement systems. Bend-induced retardation varies with the square of the curvature and is believed caused by a waveguide geometry effect. Twist-induced rotation varies with the angle through which the fiber is twisted and is produced by torsional strain in the fiber. Both effects were found highly reproducible and to have small temperature dependence. Neither effect should significantly limit the performance of optical measurement systems using single-mode fibers.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  2. H. Schneider, H. Harms, A. Papp, H. Aulich, Appl. Opt. 17, 3035 (1978).
    [CrossRef] [PubMed]
  3. S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
    [CrossRef]
  4. A. M. Smith, Opt. Laser Technol. (U.K.) 12, 25 (1980).
    [CrossRef]
  5. S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
    [CrossRef]
  6. A. Papp, H. Harms, Appl. Opt. 16, 1315 (1977).
    [CrossRef] [PubMed]
  7. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef]
  8. A. M. Smith, J. Phys. E 12, 927 (1979).
    [CrossRef]
  9. J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1964).
  10. L. G. Cohen, J. W. Fleming, Bell Syst. Tech. J. 58, 945 (1979).
  11. J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
    [CrossRef]
  12. I. S. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill, New York, 1956).
  13. E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
    [CrossRef]
  14. M. J. Adams, private communication.
  15. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers” Opt. Lett.5, in press (15June1980).
    [CrossRef] [PubMed]

1980 (1)

A. M. Smith, Opt. Laser Technol. (U.K.) 12, 25 (1980).
[CrossRef]

1979 (6)

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
[CrossRef]

A. M. Smith, J. Phys. E 12, 927 (1979).
[CrossRef]

L. G. Cohen, J. W. Fleming, Bell Syst. Tech. J. 58, 945 (1979).

J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
[CrossRef]

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

1978 (2)

1977 (1)

1975 (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Adams, M. J.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

M. J. Adams, private communication.

Aulich, H.

Chang, D. C.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Cohen, L. G.

L. G. Cohen, J. W. Fleming, Bell Syst. Tech. J. 58, 945 (1979).

Eickhoff, W.

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers” Opt. Lett.5, in press (15June1980).
[CrossRef] [PubMed]

Fleming, J. W.

L. G. Cohen, J. W. Fleming, Bell Syst. Tech. J. 58, 945 (1979).

Harms, H.

Kuester, E. F.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Love, J. D.

J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
[CrossRef]

Norman, S. R.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1964).

Papp, A.

Payne, D. N.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers” Opt. Lett.5, in press (15June1980).
[CrossRef] [PubMed]

Sammut, R. A.

J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
[CrossRef]

Schneider, H.

Simon, A.

Smith, A. M.

A. M. Smith, Opt. Laser Technol. (U.K.) 12, 25 (1980).
[CrossRef]

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

A. M. Smith, J. Phys. E 12, 927 (1979).
[CrossRef]

A. M. Smith, Appl. Opt. 17, 52 (1978).
[CrossRef] [PubMed]

Snyder, A. W.

J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
[CrossRef]

Sokolnikoff, I. S.

I. S. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill, New York, 1956).

Ulrich, R.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
[CrossRef]

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers” Opt. Lett.5, in press (15June1980).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

Bell Syst. Tech. J. (1)

L. G. Cohen, J. W. Fleming, Bell Syst. Tech. J. 58, 945 (1979).

Electron. Lett. (2)

J. D. Love, R. A. Sammut, A. W. Snyder, Electron. Lett. 15, 615 (1979).
[CrossRef]

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, Electron. Lett. 15, 309 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

J. Phys. E (1)

A. M. Smith, J. Phys. E 12, 927 (1979).
[CrossRef]

Opt. Laser Technol. (U.K.) (1)

A. M. Smith, Opt. Laser Technol. (U.K.) 12, 25 (1980).
[CrossRef]

Other (4)

J. F. Nye, Physical Properties of Crystals (Oxford U. P., London, 1964).

M. J. Adams, private communication.

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers” Opt. Lett.5, in press (15June1980).
[CrossRef] [PubMed]

I. S. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill, New York, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical fiber bend measurements.

Fig. 2
Fig. 2

Graph of bend-induced birefringence against length for different bend diameters.

Fig. 3
Fig. 3

Graph of bend-induced birefringence against reciprocal square bend radius.

Fig. 4
Fig. 4

Graph of bend-induced retardation against temperature.

Fig. 5
Fig. 5

Optical fiber twist measurements.

Fig. 6
Fig. 6

Graph of output polarization angle against twist angle.

Fig. 7
Fig. 7

Graph of twist-induced rotation angle against temperature.

Fig. 8
Fig. 8

Optical fiber core deformation produced by bending.

Tables (1)

Tables Icon

Table I Properties of Fiber GSB2

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S 1 = S 2 = σ x / R , S 3 = x / R , S i = 0 i = 4 , 6 ,
b i = 1 / i = 1 , 3 , b i = 0 i = 4 , 6 ,
p i j = ξ ζ ζ 0 0 0 ζ ξ ζ 0 0 0 ζ ζ ξ 0 0 0 0 0 0 γ 0 0 0 0 0 0 γ 0 0 0 0 0 0 γ ,
b 1 = 1 / x b 2 = 1 / y b 3 = 1 / z b i = 0 i = 4.6 ,
x = y = { 1 ( α x / R ) + ( α x / R ) 2 . . . } , z = { 1 ( β x / R ) + ( β x / R ) 2 . . . } ,
E t ( x , y , z ) = m a m exp ( i k m z ) E m t ( x , y ) ,
d a m ( z ) / d z = i n κ m n a n ( z ) exp [ i ( k n k m ) z ] .
E 1 = [ J ( r ) , 0 , ( i / k 1 ) J ˙ ( r ) cos ϕ ] , E 2 = [ 0 , J ( r ) , ( i / k 1 ) J ˙ ( r ) sin ϕ ] ,
κ m n = [ I m n ( 1 ) + I m n ( 2 ) ] / Q
I m n ( 1 ) = k k 1 E m * · ( ̅ E n ) d x d y , I m n ( 2 ) = i k E m z * · ( ̅ E n ) d x d y , Q = 4 π n 0 k 1 J 2 r d r .
̅ 4 = p 44 n 0 4 τ x ̅ 5 = p 44 n 0 4 τ y .
κ 11 = κ 22 = 0 , κ 12 = κ 21 = i n 0 2 p 44 τ / 2 .
̅ 1 = ̅ 2 = [ ( α x / R ) + α x / R ) 2 ] , ̅ 3 = [ ( β x / R ) + ( β x / R ) 2 ] , ̅ i = 0 i = 4 , 6 .

Metrics