Abstract

The polarization of twisted fiber with elliptical cross section was analyzed using the Marcuse mode-coupling theory. It was concluded that twist coupling is not effective unless the twist is fast (several rads/m). Experimental results qualitatively agree with the analysis.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, V. Ramaswamy, P. Kaiser, presented at Topical Meeting on Integrated and Guided Wave Optics, 16–18 Jan. 1978, Salt Lake City, Utah.
  2. V. Ramaswamy, I. P. Kaminow, Laser Focus 14, 48 (Oct.1978).
  3. T. Okoshi, Trans. IECE Jpn. OQE 62, 78 (Feb.1979) (in Japanese).
  4. C. Yeh, J. Appl. Phys. 33, 2335 (1962).
  5. H. Tsuchiya, J. Sakai, Trans. IECE Jpn. OQE57, 74 (1974) (in Japanese).
  6. Y. Fujii, K. Sano, Trans. IECE Jpn. OQE61, 78 (Oct.1978) (in Japanese).
  7. S. R. Norman, D. N. Payne, M. J. Adams, presented at Fifth European Conference on Optical Communications (1979), paper 10.1.
  8. E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
    [CrossRef]
  9. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  10. D. Marcuse, Theory of Dielectric Optical WaveguidesAcademic, New York, 1974).
  11. A. M. Smith, presented at Fifth European Conference on Optical Communications (1979), paper 10.2.
  12. I. P. Kaminow, presented at Fifth European Conference on Optical Communications (1979), paper 10.4.

1979 (2)

T. Okoshi, Trans. IECE Jpn. OQE 62, 78 (Feb.1979) (in Japanese).

R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
[CrossRef] [PubMed]

1978 (2)

Y. Fujii, K. Sano, Trans. IECE Jpn. OQE61, 78 (Oct.1978) (in Japanese).

V. Ramaswamy, I. P. Kaminow, Laser Focus 14, 48 (Oct.1978).

1975 (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

1974 (1)

H. Tsuchiya, J. Sakai, Trans. IECE Jpn. OQE57, 74 (1974) (in Japanese).

1962 (1)

C. Yeh, J. Appl. Phys. 33, 2335 (1962).

Adams, M. J.

S. R. Norman, D. N. Payne, M. J. Adams, presented at Fifth European Conference on Optical Communications (1979), paper 10.1.

Chang, D. C.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Fujii, Y.

Y. Fujii, K. Sano, Trans. IECE Jpn. OQE61, 78 (Oct.1978) (in Japanese).

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, presented at Topical Meeting on Integrated and Guided Wave Optics, 16–18 Jan. 1978, Salt Lake City, Utah.

Kaminow, I. P.

V. Ramaswamy, I. P. Kaminow, Laser Focus 14, 48 (Oct.1978).

I. P. Kaminow, presented at Fifth European Conference on Optical Communications (1979), paper 10.4.

Kuester, E. F.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical WaveguidesAcademic, New York, 1974).

Norman, S. R.

S. R. Norman, D. N. Payne, M. J. Adams, presented at Fifth European Conference on Optical Communications (1979), paper 10.1.

Okoshi, T.

T. Okoshi, Trans. IECE Jpn. OQE 62, 78 (Feb.1979) (in Japanese).

Payne, D. N.

S. R. Norman, D. N. Payne, M. J. Adams, presented at Fifth European Conference on Optical Communications (1979), paper 10.1.

Ramaswamy, V.

V. Ramaswamy, I. P. Kaminow, Laser Focus 14, 48 (Oct.1978).

R. H. Stolen, V. Ramaswamy, P. Kaiser, presented at Topical Meeting on Integrated and Guided Wave Optics, 16–18 Jan. 1978, Salt Lake City, Utah.

Sakai, J.

H. Tsuchiya, J. Sakai, Trans. IECE Jpn. OQE57, 74 (1974) (in Japanese).

Sano, K.

Y. Fujii, K. Sano, Trans. IECE Jpn. OQE61, 78 (Oct.1978) (in Japanese).

Simon, A.

Smith, A. M.

A. M. Smith, presented at Fifth European Conference on Optical Communications (1979), paper 10.2.

Stolen, R. H.

R. H. Stolen, V. Ramaswamy, P. Kaiser, presented at Topical Meeting on Integrated and Guided Wave Optics, 16–18 Jan. 1978, Salt Lake City, Utah.

Tsuchiya, H.

H. Tsuchiya, J. Sakai, Trans. IECE Jpn. OQE57, 74 (1974) (in Japanese).

Ulrich, R.

Yeh, C.

C. Yeh, J. Appl. Phys. 33, 2335 (1962).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

J. Appl. Phys. (1)

C. Yeh, J. Appl. Phys. 33, 2335 (1962).

Laser Focus (1)

V. Ramaswamy, I. P. Kaminow, Laser Focus 14, 48 (Oct.1978).

Trans. IECE Jpn. (3)

T. Okoshi, Trans. IECE Jpn. OQE 62, 78 (Feb.1979) (in Japanese).

H. Tsuchiya, J. Sakai, Trans. IECE Jpn. OQE57, 74 (1974) (in Japanese).

Y. Fujii, K. Sano, Trans. IECE Jpn. OQE61, 78 (Oct.1978) (in Japanese).

Other (5)

S. R. Norman, D. N. Payne, M. J. Adams, presented at Fifth European Conference on Optical Communications (1979), paper 10.1.

R. H. Stolen, V. Ramaswamy, P. Kaiser, presented at Topical Meeting on Integrated and Guided Wave Optics, 16–18 Jan. 1978, Salt Lake City, Utah.

D. Marcuse, Theory of Dielectric Optical WaveguidesAcademic, New York, 1974).

A. M. Smith, presented at Fifth European Conference on Optical Communications (1979), paper 10.2.

I. P. Kaminow, presented at Fifth European Conference on Optical Communications (1979), paper 10.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration and normal mode of elliptically cross-sectioned optical fiber.

Fig. 2
Fig. 2

Slightly twisted elliptical fiber.

Fig. 3
Fig. 3

Epsilon-independent terms in coupling coefficient R [Eq. (6)].

Fig. 4
Fig. 4

Cross-sectional view of the fiber.

Fig. 5
Fig. 5

Coupling of eHE11 and oHE11 modes caused by the twist: fiber length is 589 mm, Δ = 0.2%, and = 18%. The output analyzer is also twisted according to the twisted axes of the elliptical fiber, while the input polarizer is kept constant. A λ = 0.8-μm laser diode was used.

Tables (1)

Tables Icon

Table I Permissible Twist Angle Per Unit Length θ (deg/m) for x = 0.1, n1 = 1.46, Δ = 0.2%

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R = ω 0 4 ( β e β o ) n 2 z e e * e o d x d y ,
Θ = θ · z .
R = ω 0 n 1 2 Δ 2 ( β o β e ) 0 2 π S [ ( 1 + 2 Δ ) e e , · ξ * e o ξ + e e , · η * e o , η + e e , · z * e o , z ] ξ = ξ 0 d η ,
S = 2 1 h 2 θ sin 2 η ( sinh 2 ξ 0 + sin 2 η ) ( sinh ξ 0 cos η ) 2 + ( cosh ξ sin η ) 2 ,
Δ n 1 n 2 n 1 ,
R = 1 + R b R a ,
R a = ( 1 u 0 + w 0 2 4 u 0 ) J 0 ( u 0 ) J 1 ( u 0 ) + 5 4 ,
R b = 1 u 0 2 4 u 0 J 0 ( u 0 ) J 1 ( u 0 ) ( 1 w 0 2 u 0 2 ) [ J 0 ( u 0 ) J 1 ( u 0 ) ] 2
u 0 = ( k 0 2 n 1 2 β 2 ) 1 / 2 h cosh ξ 0 ,
w 0 = ( β 2 k 0 2 n 1 2 ) 1 / 2 h cosh ξ 0 .
| C e ( z ) | 2 = R 2 ( β o β e ) 2 4 + R 2 { sin [ ( β o β e ) 2 4 ] 1 / 2 + R 2 · z } 2 ,
| C o ( z ) | 2 = 1 | C e ( z ) | 2 .
| C e ( z ) | max 2 | C o ( 0 ) | 2 = R 2 ( β o β e ) 4 + R 2 x ,
β o β e = n 1 k 0 Δ 2 ( G o G e ) .
G o G e u 0 2 w 0 2 2 υ 4 [ ( 2 w 0 + w 0 2 ) K 0 ( w 0 ) K 1 ( w 0 ) + 5 2 ] ,
θ x 1 x · n 1 π Δ 2 λ ( 1 0.8 ) = x 1 x · | β o β e | ( 1 0.8 ) ( rad / m )
= 1 b a + μ 2 b 2 2 ρ 2 · b a ,
β o β e = 0.3 / R 2 ( m ) .
β e β o = 3.5 ± 0.5 rad / m ,

Metrics