Abstract

The method of archival storage of color films utilizing a spatial color encoding process and a white light color image retrieval technique is described. This archival technique offers several advantages as compared with all the other existing archival techniques: It employs a white light source for the encoding and decoding processes, so that the coherent artifact noise can be avoided. Since the technique does not utilize a slit aperture and a narrow spatial filter, the reproduced color image causes no marginal loss in resolution. The storage volume by this technique is also reduced to one-third of that needed with the traditional technique. This technique offers the advantage of direct viewing, which may be important for library applications. We also stress that this archival storage technique is simple and economical to implement. A simple experimental demonstration is also presented.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, A. Tai, H. Chen, Opt. Commun. 27, 307 (1978).
    [CrossRef]
  2. H. Chen, F. T. S. Yu, Opt. Lett. 2, 85 (1978).
    [CrossRef] [PubMed]
  3. H. Chen, A. Tai, F. T. S. Yu, Appl. Opt. 17, 1490 (1978).
    [CrossRef] [PubMed]
  4. J. C. Wyant, Opt. Lett. 1, 130 (1977).
    [CrossRef] [PubMed]
  5. H. Chen, Appl. Opt. 17, 3290 (1978).
    [CrossRef] [PubMed]
  6. C. S. Ih, Appl. Opt. 14, 438 (1975).
    [CrossRef] [PubMed]
  7. F. T. S. Yu, Opt. Commun. 27, 23 (1978).
    [CrossRef]
  8. F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
    [CrossRef] [PubMed]
  9. F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
    [CrossRef] [PubMed]
  10. F. T. S. Yu, T.H. Chao, Optik (1980) (in press).
  11. H. E. Ives, Br. J. Photogr. (3Aug.1906), p. 609.
  12. P. F. Mueller, Appl. Opt. 8, 2051 (1969).
    [CrossRef] [PubMed]
  13. P. F. Mueller, Appl. Opt. 8, 267 (1969).
    [CrossRef] [PubMed]
  14. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, 1973).
  15. C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

1979 (1)

1978 (6)

1977 (1)

1975 (1)

1969 (2)

1906 (1)

H. E. Ives, Br. J. Photogr. (3Aug.1906), p. 609.

Chao, T.H.

F. T. S. Yu, T.H. Chao, Optik (1980) (in press).

Chen, H.

Ih, C. S.

Ives, H. E.

H. E. Ives, Br. J. Photogr. (3Aug.1906), p. 609.

James, T. H.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

Mees, C. E. K.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

Mueller, P. F.

Tai, A.

Wyant, J. C.

Yu, F. T. S.

F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
[CrossRef] [PubMed]

H. Chen, F. T. S. Yu, Opt. Lett. 2, 85 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

F. T. S. Yu, A. Tai, H. Chen, Opt. Commun. 27, 307 (1978).
[CrossRef]

F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
[CrossRef] [PubMed]

H. Chen, A. Tai, F. T. S. Yu, Appl. Opt. 17, 1490 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, T.H. Chao, Optik (1980) (in press).

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, 1973).

Appl. Opt. (7)

Br. J. Photogr. (1)

H. E. Ives, Br. J. Photogr. (3Aug.1906), p. 609.

Opt. Commun. (2)

F. T. S. Yu, A. Tai, H. Chen, Opt. Commun. 27, 307 (1978).
[CrossRef]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

Opt. Lett. (2)

Other (3)

F. T. S. Yu, T.H. Chao, Optik (1980) (in press).

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, 1973).

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sequential spatial color encoding technique.

Fig. 2
Fig. 2

Three angular positions of the Ronchi grating.

Fig. 3
Fig. 3

White light processor for spatial color decoding. I, extended white light source; L, transform lens; Tp(x,y), spatial color encoded transparency.

Fig. 4
Fig. 4

Spatial color decoding filter.

Fig. 5
Fig. 5

Black and white color picture reproduced by this technique.

Fig. 6
Fig. 6

Black and white color picture of the original color image.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T n ( x , y ) = K 1 { T r ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T b ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T g ( x , y ) [ 1 + sgn ( cos p 0 x ) ] } γ n 1 ,
sgn ( cos p 0 x ) { 1 , cos ( p 0 x ) 0 , 1 , cos ( p 0 x ) 0 ,
T p ( x , y ) = K 2 { T r ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T b ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T g ( x , y ) [ 1 + sgn ( cos p 0 x ) ] } γ n 1 γ n 2 ,
t p ( x , y ) = K { T r ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T b ( x , y ) [ 1 + sgn ( cos p 0 x ) ] + T g ( x , y ) [ 1 + sgn ( cos p 0 x ) ] } ,
E ( p , q ) = C t p ( x , y ) exp [ i ( p x + q y ) ] dxdyd λ ,
E ( p , q ; λ ) = T r ( p , q ) + ½ n = 1 a n T r ( p ± n p 0 , q ) + T b ( p , q ) + ½ n = 1 a n T b ( p ± n p 0 , q ) + T g ( p , q ) + ½ n = 1 a n T g ( p ± n p 0 , q ) ,
E ( α , β ; λ ) = T r ( α , β ) + ½ n = 1 a n T r ( α ± n λ f 2 π p 0 , β ) + T b ( α , β ) + ½ n = 1 a n T b ( α ± n λ f 2 π p 0 , β ) + T g ( α , β ) + ½ n = 1 a n T g ( α ± n λ f 2 π p 0 , β ) .
E ( α , β ) = T r ( α λ r f 2 π p 0 , β ) + T b ( α + λ b f 2 π p 0 , β ) + T g ( α λ g f 2 π p 0 , β ) ,
E ( x , y ) = T r ( x , y ) exp ( i x p 0 ) + T b ( x , y ) exp ( i x p 0 ) + T g ( x , y ) exp ( i x p 0 ) .
I ( x , y ) = T r 2 ( x , y ) + T b 2 ( x , y ) + T g 2 ( x , y ) ,

Metrics