Abstract

A novel compact optical variable-attenuator with a wide dynamic range for use in single-mode fiber transmission systems has been developed. Attenuation rate can be continuously adjusted by changing the distance between the end faces of the two fibers in the V-channel on a concave surface. The calculated insertion loss is <0.5 dB; the dynamic range of 30 dB is attained by <2.5 mm end separation. The calculated losses were verified experimentally. Reproducibility of the attenuation is within 0.5 dB.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. North, J. H. Stewart, “A Rod Lens Connector for Optical Fibers,” presented at the Optical Communication Conference Proceedings, Amsterdam, ECOC,17–19Sept. (1979), pp. 9.4–1 to 4.
  2. K. Nawata, J. Minowa, Electr. Commun. Lab. Tech. J. Jpn. 28, 1959 (1979).
  3. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  4. A. Nicia, Electron. Lett. 4, 511 (1978).
    [CrossRef]
  5. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
  6. J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).
  7. H. Kogelnik, “Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14 (Polytechnic Press, New York, 1964), pp. 333–347.
  8. D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
    [CrossRef]
  9. C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.
  10. N. Shimizu, H. Tsuchiya, Trans. Inst. Electron. Commun. Eng. Jpn. J62-C, No. 4, 237 (1971).
  11. K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), pp. 40–43.
  12. J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

1979 (1)

K. Nawata, J. Minowa, Electr. Commun. Lab. Tech. J. Jpn. 28, 1959 (1979).

1978 (2)

1977 (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

1973 (1)

J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

1971 (1)

N. Shimizu, H. Tsuchiya, Trans. Inst. Electron. Commun. Eng. Jpn. J62-C, No. 4, 237 (1971).

1966 (1)

Arnaud, J. A.

J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).

Cohen, L. G.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.

Cook, J. S.

J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

French, W. G.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.

Grow, R. J.

J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

Kogelnik, H.

H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
[CrossRef] [PubMed]

H. Kogelnik, “Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14 (Polytechnic Press, New York, 1964), pp. 333–347.

Li, T.

Lin, C.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.

Mammal, W. L.

J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

Marcuse, D.

D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
[CrossRef]

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Minowa, J.

K. Nawata, J. Minowa, Electr. Commun. Lab. Tech. J. Jpn. 28, 1959 (1979).

Nawata, K.

K. Nawata, J. Minowa, Electr. Commun. Lab. Tech. J. Jpn. 28, 1959 (1979).

K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), pp. 40–43.

Nicia, A.

A. Nicia, Electron. Lett. 4, 511 (1978).
[CrossRef]

North, J. S.

J. S. North, J. H. Stewart, “A Rod Lens Connector for Optical Fibers,” presented at the Optical Communication Conference Proceedings, Amsterdam, ECOC,17–19Sept. (1979), pp. 9.4–1 to 4.

Presby, H. M.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.

Shimizu, N.

N. Shimizu, H. Tsuchiya, Trans. Inst. Electron. Commun. Eng. Jpn. J62-C, No. 4, 237 (1971).

Stewart, J. H.

J. S. North, J. H. Stewart, “A Rod Lens Connector for Optical Fibers,” presented at the Optical Communication Conference Proceedings, Amsterdam, ECOC,17–19Sept. (1979), pp. 9.4–1 to 4.

Tsuchiya, H.

N. Shimizu, H. Tsuchiya, Trans. Inst. Electron. Commun. Eng. Jpn. J62-C, No. 4, 237 (1971).

Appl. Opt. (1)

Bell Syst. Tech. J. (2)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

J. S. Cook, W. L. Mammal, R. J. Grow, Bell Syst. Tech. J. 52, 1439 (1973).

Electr. Commun. Lab. Tech. J. Jpn. (1)

K. Nawata, J. Minowa, Electr. Commun. Lab. Tech. J. Jpn. 28, 1959 (1979).

Electron. Lett. (1)

A. Nicia, Electron. Lett. 4, 511 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Trans. Inst. Electron. Commun. Eng. Jpn. (1)

N. Shimizu, H. Tsuchiya, Trans. Inst. Electron. Commun. Eng. Jpn. J62-C, No. 4, 237 (1971).

Other (5)

K. Nawata, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1979), pp. 40–43.

C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1. 1–1.3-μm Spectral Region—A Pulse Synchronization Technique,” presented at the Optical Communication Conference, ECOC, Amsterdam, 17–19 Sept. (1979), pp. 14.3–2 to 5.

J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).

H. Kogelnik, “Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14 (Polytechnic Press, New York, 1964), pp. 333–347.

J. S. North, J. H. Stewart, “A Rod Lens Connector for Optical Fibers,” presented at the Optical Communication Conference Proceedings, Amsterdam, ECOC,17–19Sept. (1979), pp. 9.4–1 to 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic idea of the attenuator. Attenuation rate can be continuously adjusted by moving the fiber and by changing end separation D and tilt angle T of the two fiber ends, w0 is the beam waist halfwidth at the end face of the fiber.

Fig. 2
Fig. 2

Measured far-field pattern of a single-mode fiber. Fiber: step index, core radius a = 5 μm, Δ = 0.2%. Optical source: 1.30 μm laser diode. Detector: Ge-APD with 100 μm diam pinhole.

Fig. 3
Fig. 3

Attenuator consists of a curved V-channel and two single-mode fibers, one fixed and the other attached to the moving arm end. The arm pivot is at the V-channel curvature center. Both fibers are in the V-channel; the end of one is moved along the V-channel by the moving arm driven by the precision micrometer head. Both V-channel fibers are without primary coating.

Fig. 4
Fig. 4

Schematic representation of the attenuator calculation model. R is the curvature of the curved V-channel, D is the fiber end separation, and T is the tilt angle of the fiber optical axis.

Fig. 5
Fig. 5

Calculated coupling loss L vs fiber end separation D in the attenuator. Solid and dashed lines show calculations for 1.25 and 1.35 μm wavelengths. Dotted and open circles are measured data on a 1.3 μm wavelength laser diode. These measured values are minus Fresnel reflection losses of ∼0.3 dB.

Fig. 6
Fig. 6

Schematic representation of the attenuator experimental setup. A high-power objective lens focuses the output beams of the laser diode into the end face of a single-mode fiber 2 m long. The receiving detector has the same length fiber. Outgoing and incoming fibers of the attenuator are coated single-mode fibers over 1 m long to reject most of the unguided-mode light. The fiber coating material-clad index is slightly higher than that of the glass-clad index. One fiber is attached to the moving arm end tracks along the curved V-channel driven by the micrometer head, while the other fiber remains in fixed position in the V-channel.

Tables (2)

Tables Icon

Table I Experimental Conditions of the Attenuator

Tables Icon

Table II Experimental Results of the Attenuator

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = 10 log ( { 4 / [ 4 + ( λ D / π w 0 2 ) 2 ] } exp [ ( π n 0 w 0 T / λ ) 2 ] ) ,
T = 2 sin 1 ( D / 2 R ) ,

Metrics