Abstract

This paper has characterized and measured scatter from high efficiency and reflective diffraction gratings. Three major types of scatter are identified: (1) random, which occurs over 2π sr; (2) band or ghost scatter, which occurs in the plane of incidence; and (3) structured scatter, which is a symmetrical pattern repeated about each order. Measurements were taken at 10.6 μm on gratings made by ruling, ion etching, holography, or a combination of these techniques. We found that the characteristic scatter from these high efficiency gratings depends strongly on the way the gratings are fabricated.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Janney, “Ring Resinator Gas Dynamic Laser With Diffraction Grating Coupling and Axial Mode Selection,” presented at IEDM, Washington, D.C. (Oct. 1971).
  2. G. Janney, H. Garvin, D. Close, “Nonconventional Diffraction Grating Coupling and Axial Mode Selection,” presented at Sixth Winter Colloquium on Quantum Electronics, Steamboat Springs, Colo. (Feb. 1976).
  3. M. Sharpe, D. Irish, Opt. Acta 25, 861 (1978).
    [CrossRef]
  4. J. F. Verrill, Opt. Acta 17, 747 (1970).
    [CrossRef]
  5. J. F. Verrill, Opt. Acta 25, 531 (1978).
    [CrossRef]
  6. M. Minden, G. Dunning, Hughes Research Report 528 (Oct.1979).
  7. E. Loewen, M. Neviere, D. Maystre, Appl. Opt. 16, 2711 (1977).
    [CrossRef] [PubMed]
  8. H. Kalhor, A. Neureuther, J. Opt. Soc. Am. 61, 43 (1971).
    [CrossRef]
  9. H. Garvin et al., Appl. Opt. 12, 455 (1973).
    [CrossRef] [PubMed]
  10. J. Garvey et al., “Holographic Grating Study,” Rome Air Development Center Report, RADC-TR-78-275 (March1979), Vol. 1.
  11. G. Stroke, in Handbuch Der Physick, S. Flugge, Ed. (Springer, Berlin, 1967), Vol. 25, pp. 687–730.

1978 (2)

M. Sharpe, D. Irish, Opt. Acta 25, 861 (1978).
[CrossRef]

J. F. Verrill, Opt. Acta 25, 531 (1978).
[CrossRef]

1977 (1)

1973 (1)

1971 (1)

1970 (1)

J. F. Verrill, Opt. Acta 17, 747 (1970).
[CrossRef]

Close, D.

G. Janney, H. Garvin, D. Close, “Nonconventional Diffraction Grating Coupling and Axial Mode Selection,” presented at Sixth Winter Colloquium on Quantum Electronics, Steamboat Springs, Colo. (Feb. 1976).

Dunning, G.

M. Minden, G. Dunning, Hughes Research Report 528 (Oct.1979).

Garvey, J.

J. Garvey et al., “Holographic Grating Study,” Rome Air Development Center Report, RADC-TR-78-275 (March1979), Vol. 1.

Garvin, H.

H. Garvin et al., Appl. Opt. 12, 455 (1973).
[CrossRef] [PubMed]

G. Janney, H. Garvin, D. Close, “Nonconventional Diffraction Grating Coupling and Axial Mode Selection,” presented at Sixth Winter Colloquium on Quantum Electronics, Steamboat Springs, Colo. (Feb. 1976).

Irish, D.

M. Sharpe, D. Irish, Opt. Acta 25, 861 (1978).
[CrossRef]

Janney, G.

G. Janney, “Ring Resinator Gas Dynamic Laser With Diffraction Grating Coupling and Axial Mode Selection,” presented at IEDM, Washington, D.C. (Oct. 1971).

G. Janney, H. Garvin, D. Close, “Nonconventional Diffraction Grating Coupling and Axial Mode Selection,” presented at Sixth Winter Colloquium on Quantum Electronics, Steamboat Springs, Colo. (Feb. 1976).

Kalhor, H.

Loewen, E.

Maystre, D.

Minden, M.

M. Minden, G. Dunning, Hughes Research Report 528 (Oct.1979).

Neureuther, A.

Neviere, M.

Sharpe, M.

M. Sharpe, D. Irish, Opt. Acta 25, 861 (1978).
[CrossRef]

Stroke, G.

G. Stroke, in Handbuch Der Physick, S. Flugge, Ed. (Springer, Berlin, 1967), Vol. 25, pp. 687–730.

Verrill, J. F.

J. F. Verrill, Opt. Acta 25, 531 (1978).
[CrossRef]

J. F. Verrill, Opt. Acta 17, 747 (1970).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Opt. Acta (3)

M. Sharpe, D. Irish, Opt. Acta 25, 861 (1978).
[CrossRef]

J. F. Verrill, Opt. Acta 17, 747 (1970).
[CrossRef]

J. F. Verrill, Opt. Acta 25, 531 (1978).
[CrossRef]

Other (5)

M. Minden, G. Dunning, Hughes Research Report 528 (Oct.1979).

G. Janney, “Ring Resinator Gas Dynamic Laser With Diffraction Grating Coupling and Axial Mode Selection,” presented at IEDM, Washington, D.C. (Oct. 1971).

G. Janney, H. Garvin, D. Close, “Nonconventional Diffraction Grating Coupling and Axial Mode Selection,” presented at Sixth Winter Colloquium on Quantum Electronics, Steamboat Springs, Colo. (Feb. 1976).

J. Garvey et al., “Holographic Grating Study,” Rome Air Development Center Report, RADC-TR-78-275 (March1979), Vol. 1.

G. Stroke, in Handbuch Der Physick, S. Flugge, Ed. (Springer, Berlin, 1967), Vol. 25, pp. 687–730.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Beam geometry in near-Littrow configuration; n = − 1 order may diffract to either side of incident beam. For scatter experiments Δ ≃ 14°.

Fig. 2
Fig. 2

SEM photographs of ion-etched gratings.

Fig. 3
Fig. 3

Scatter patterns photographed at 6328 Å to emphasize variations in scatter produced by ruled, contact-printed, and holographic gratings.

Fig. 4
Fig. 4

Grating samples photographed through a visible microscope: 1000×.

Fig. 5
Fig. 5

Method of measurement of interorder ghost or band scatter at 10.6 μm.

Fig. 6
Fig. 6

Interorder band or ghost scatter measured at 10.6 μm into 6.3 mrad for ruled, contact-printed, and holographic gratings.

Fig. 7
Fig. 7

Method of measuring out-of-plane random scatter in 0.1 sr. A 0.001-sr rejecting mirror in front of the collecting mirror is used to deflect the n = 0 and n = − 1 orders.

Fig. 8
Fig. 8

Out-of-plane random scatter at 10.6 μm for ruled, contact-printed, and holographic gratings.

Tables (1)

Tables Icon

Table I Comparison Chart of Grating Fabrication Techniques and Properties

Metrics