Abstract

An interferometric technique based on a white light fringe setting was used to set mirrors defining a base plane in a Michelson stellar interferometer to coplanarity. The method is in principle capable of extension to very large separations, and the precision of visual setting is of the order of the wavelength of light.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Twiss, W. J. Tango, (1977),Rev. Mex. Astronom. Astrofis. 3, 35 (1977).
  2. A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921).
    [CrossRef]
  3. W. J. Tango, in International Astronomical Union Colloquium No. 50, J. Davis, W. J. Tango, Eds. (IAU, 1979) pp. 13.1–13.7.

1921 (1)

A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921).
[CrossRef]

Michelson, A. A.

A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921).
[CrossRef]

Pease, F. G.

A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921).
[CrossRef]

Tango, W. J.

W. J. Tango, in International Astronomical Union Colloquium No. 50, J. Davis, W. J. Tango, Eds. (IAU, 1979) pp. 13.1–13.7.

R. Q. Twiss, W. J. Tango, (1977),Rev. Mex. Astronom. Astrofis. 3, 35 (1977).

Twiss, R. Q.

R. Q. Twiss, W. J. Tango, (1977),Rev. Mex. Astronom. Astrofis. 3, 35 (1977).

Astrophys. J. (1)

A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921).
[CrossRef]

Other (2)

W. J. Tango, in International Astronomical Union Colloquium No. 50, J. Davis, W. J. Tango, Eds. (IAU, 1979) pp. 13.1–13.7.

R. Q. Twiss, W. J. Tango, (1977),Rev. Mex. Astronom. Astrofis. 3, 35 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of the alignment system.

Fig. 2
Fig. 2

Collimator and system for viewing fringes.

Fig. 3
Fig. 3

Extending collimator by means of rhombs.

Fig. 4
Fig. 4

Alignment of a long base line in more than one stage.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = G ( λ ) d λ [ 1 + 2 J 1 ( π D d 0 λ f ) cos 2 π λ ( D x f + 4 h cos θ ) ] × ( sin π a x λ f π a λ f ) 2 ( sin π b y λ f π b λ f ) 2 .
Δ h = ρ D λ eff 4 a cos θ ,
| Δ h | ~ λ eff ρ L 4 a ~ λ eff ρ L 2 4 W D ~ λ eff ρ D 4 W cos 2 θ

Metrics